What's New
TOPAS-Academic

Version 8

Alan A Coelho www.topas-academic.net

November 7, 2025

http://www.topas-academic.net/

1.

New Functionality 1

Contents
NEW FUNCTIONALITY ..cuuiitiiiiiiiiiiiinieieniiinisiseissisissisnsisissisissssssssssssssssnssssssssssnsns 3
1.1 RUNNING TOPAS IN HIGH PRIORITY MODE. ... tuttuttnttnetueeuetnrtneeneesassnsenesnessesensenesnsssessnsens 3
1.1.1 Running TA.EXE in high priority mode (TOPASH.BAT)........ouuviveiiniiieieeieeee 3
1.1.2 Running TC.EXE in high priority MOde............ccceevemieeiiiiiiie e 3
1.2 NEW PDF FUNCTIONALITY 1t ttnttnrtneenerertnreneenerenrenetnssnesesensensesesensenssnssessensanssnsssasennens 4
1.2.1 AV e N 1ol o B ol =Y 10 =1 0 1T o 1 S 4
1.2.2 Multiatom approach to ADPs in PDF refin€mentccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeenn, 4
1.3 DISPLAYING PARTIAL PDFS «.eneiiiiiiieie ettt et et et ee et s e e ee e eansens e enasnanens 7
1.4 SETTING A-MATRIX ELEMENTS THAT MUST-BE-ZERO TO ZERO .utvuteuiuneunernernseneesnesnssnesnessnasenes 8
1.5 STRETCHING PEAKS ..etetittettieeteetnetnetieeuetnetuesuassassnssnessasenssnesuessessnstnssnsssnsenssnssnessnsenees 8
1.6 REUSING OBJECTS IN LARGE REFINEMENTS ..euututieiunetnetueenetnrtneeneesassnsenesnessnsensenesnnssassnsens 9
1.7 20 POINT BY POINT CALCULATION OF FO AND BEQ vuuvuuiuneuneeneeneeueesneensenesneseeenernesnessasennens 13
1.8 TO_PRM AND USING AN EQUATION TO DEFINE A PARAMETER NAMEuvvueterenrererenreneeneenncensenns 13
1.9 INGESTING FILES INTO AN INP FILE USING HINGEST ..eutvuttieuneeneinrennererenreneenereareneenesensensenns 14
1.10 H#EXTERNAL_INP - USING EXTERNAL INP FORMAT FILES ..utuutrnrinreneenneenreneeneenncerensennenasennens 14
1.11 DEFINING HKLS USING USE_HKLM 1e.tuutuntunreneeneennernrennenseserensensenesensenssnesensensenssnssnssensens 15
1.12 DEFINING LOCAL PARAMETERS USING $..eeeeerriiiiieeeeeeeeeeeetitieeeeeeeeeeeertaeeeeeeeeeeeesnnnnnens 15
1.13 LOAD_SAVE_LOCALS - AUTOMATICALLY SAVING AND LOADING PARAMETERScuuvvnrinennennnnnnnnn 16
1.14 TRANSFORM_XWITHOUT RECALCULATING PATTERNS ..tuuiueunetnreneeieeunrenerneenesnssnssneesasensens 18
1.15 TRACKING ATOMIC MOVEMENTS GRAPHICALLY ..eutvututnittnetnreeeneenereenetnreesnesnssesnesaseesneensens 18
1.16 ENERGY MINIMIZATION .1uitueunernrunreneeueeunrenetuesuneessnsenessaseesensssssessenssnssssssnssnssnsssesensens 19
1.16.1 Reporting on the Madelung CONStANT..........cccceeeveeciiiiiiiaeeeeeciiiiiiiee e eesesciiieaaa e 19
1.16.2 Reporting on the Coulomb potential at @ Siteccccevevveecviviviieeeeeseeciiiiinannnn, 20
1.16.3 Enhancements to the grs_interacCtioN.........c.ccccoeeecvuieieeseeesecciiiiiieeeeessssciiinenaaen 20
1.16.4 Including lattice parameterin grs_interaction(s)........cccccouueevvvuvevreeeeesessiiuvvennann. 21
1.16.5 Ignoring the Coulomb part of the grs_intercationcccccvvvvveeeeeeeeeccivvennnnn. 21
1.16.6 _rem attribute - Removing/inserting parameters from refinement................... 22
1.716.7 UsSIiNg OK_t0_CONtINUE @NU _FEIM ...ttt eeeeeesse s s s s s s s e sesessssssssssssessaeas 22
1.16.8 Energy minimization-only resulting in the observed structure of AlVO4 25
1.16.9 Determining repulsion parameters for AlVOA4............oueveeeeeecciiviiiaaeeeseeiciiiinnannn, 25
1.76.70 A NON-iI0NIC MOAELTOIN AV ...ttt ettt ettt ettt ettt e e e e e e e e e eeaaeeeeaaens 27
1.17 MOLECULARDYNAMICS (MD) ettt ettt et et e e e et e e e e e e aaans 28
1.17.1 Molecular dynamics in @ 8eneral ManNEercccueeeeeeeeeeciiiiiieaaeeesesiiiinenaaann 28
1.17.2 Molecular dynamicCs fOr QLOMISuuiieeeeeeeeeeeeeee ettt ettt e se s e e e ee e e e e e s se e s eeeeeeeesaeas 29
1.717.3 APPLING @ FOIrCE ON GEOMIS.....uneeeeeeeeeeee ettt ettt e st e s e e e e e e e e e e e e e s eeasaseasaeas 32
1.18 CROSS CORRELATION FUNCTION t.uutvuerueruneenneennrennsennsennsenssennseussenesesssessserssanssennssnnnns 33
MISCELLANEOUS......ccociiiitiiiiiiineiiiinneniiniisnesisiiesesssiissssssstessssssssesssssssesssssssessssssssssasssnss 36
2.1 USER DEFINED PHASE COLOUR, LINE WIDTH AND POINT SIZE (_CLP) ..vvuttuieurenernrenreneenenneennnn 36
2.2 DISPLAY HKL TICKS ON SURFACE PLOTS .1 ttuttutuernrtnreneeuecunrenesnseusssessnsenessessesenesnsssnsansanns 36
2.3 HKL TICKS ARE NOW CORRECTED FOR ZERO ERRORS ...euutuuttnttnreneeueunrenernesunersensenesnesensenes 37
2.4 HIGHLIGHTING/DISPLAYING PHASES AND HKL TICK MARKS .. evuevuiturtunerneinreneeneeeneeneenesnnsnnsenns 37
2.5 GUI_TEXT KEYWORD NOW IGNORED BY THE KERNEL ... ututvutuitniuenetnreeeneeneneeneraseesnesnseesnennsens 39
2.6 OUTPUTTING SPECIAL CHARACTERS .. ettt ttuettuetennteensennseensreuesenssesssensesnnssenssenssansssnnsenssees 40
2.7 ITERATING OVER INTERNAL DATA-TREE NODES USING ‘FOR’ evuuivunerinerinrennrennrenneennsenneennnennnns 40

New Functionality

New Functionality 2

2.8 COMMAND PROMPT OUTPUT DURING INP FILE LOADING USING PRINT.....cutvinerneeeneeneneeneananns 41
2.9 SORTING OUTPUT BY COLUMNS USING _SORT_DEC OR_SORT_INC ..ceuvvnienirnerenrenrennennenneannens 41
2.10 CREATING MANY XDDS AT ONCE USING NEW AND XDD_FILE..uevuteueeuneeneenernernnesnsenseneeneesnasenns 41
2.11 SEED, #SEED_EQN, SEED-TC.TXT, SEED-TB.TXT, RANDuttiiniiiiiieii et e e e e 41
2.12 GETTING THE NUMBER OF ITEMS IN A #LISTUSING HLIST_N.evuttniiniiieeineenernerneereeeenaenaenneennns 42
2.13 OUT_PRM_VALS_ON_END . ttuiuttututuetnenarnetneuesnesaenernesasnesnesesnesssesnesnssesnesessesnesesnesnesnees 42
2.14 MODIFY_PEAK NOW WORKS WITH NO_TH_DEPENDENCE ...cuututtneterneeeneeneneenereneeneraenesneenens 43
2.15 NOTSAVING EXTRAPOLATED PEAKS WHEN DOING INTENSITY DERIVATIVES ...cvuiuieneeeneenennennnnnn. 43
2.16 ATOMIC FOVALUES FROM ATABLE ..eutntitieteteteteteeetetesneaeenesnenaenesnenasnessnesnesasnasnesnens 43
2.17 SELECTING FILES FOR DISPLAY USING GREP REGULAR EXPRESSIONSccuevueeuneenerneenaeeneennennns 43
2.18 APPLYING LP_SEARCH TO TOF DATA. . eu ittt et et ee et e et et e e e e e e e eaenaaeaasnaenens 44
2.19 CORRECTION FOR DISPERSION USING MODIFY_PEAK_EQN ...ceuiiuieueeuneenernernesneeneenesnaesnasennns 45
3. REFERENCGES ... iiticitiiiiticrteeereenesenseeseassensessessesenssssnssssenssssnssssenssssnssssansssensessnnes 47
2 New Functionality

New Functionality 3

1. ..NEW FUNCTIONALITY

1.1..... Running TOPAS in high priority mode

Windows is becoming more guarded with the compiler not producing EXE files that run in a
high priority mode. This slows down TOPAS appreciably when running large refinements, es-
pecially when accompanied by large memory usage. The solution is to run the program in high-
priority-mode. Below shows a factor of 10+ difference in running-time when running XRD-CT-
1.INP using TC.EXE on Window 11.

250
TEST_EXAMPLES\XRD-CT\XRD-CT-1.INP
200
150 Not running in high priority mode
@2
g Running in high priority mode
= 100
50
0
0 10 20 30 40 50 60 70 80 90 100

Iteration Number

When not running in high priority mode, time per iteration slows downs appreciably after iter-
ation 16.

1.11......... Running TA.EXE in high priority mode (TOPASH.BAT)
Run the following from the command line:
start"" /high "ta"

Or, run the batch file TOPASH.BAT.

1.1.2......... Running TC.EXE in high priority mode
From the command prompt, use the following to start the command prompt:
start /high "cmd"

Or, run the command as an administrator from the start menu by typing ‘command’ and then
choose the “Run as administrator”.

3 New Functionality

New Functionality 4

1.2..... New PDF functionality

1.2.1......... ADPs in PDF refinement

site...occZr1ul11 @ .01 u22 @ .01 u33@ .01 u12@0 UI3 @O0 u23 @0
adps_scale @ 1

ADPs can now be used and refined in PDF refinement. The syntaxis similar to reciprocal space
refinement where the apds keyword, when used, generates the ADP parameters, for example,
the following:

site Zr1 x # y # z # occ Zr 1 apds

becomes:

site Zr1 x # y # z # occ Zr 1 ADPs { ul1 # u22 # u33 # ul12 # u13 # u23 # }

This implementation is similar to PDFGui (Farrow et al., 2007) where peaks are Gaussian even at
low-r. ADP parameters will therefore correct for peak width but not asymmetry. Asymmetry does
occur however and is noticeable when atomic displacement geometry is extreme.

adps_scale allows for the scaling of the Uij parameters and it can be a function of X where X
corresponds to the distance between atoms.

prm !delt1 0.75 min 1e-6 max 5

prm !delt2 @ min 1e-5 max 1

prm !Qb 0.05 min 1e-6 max 1

prm aa 1 min 1 _v = Rand(0.5, 1.5);

adps_scale = 2 aa (Abs(1 - delt1 / X - delt2 / X*2 + (Qb%2) X*2));

The FWHM of a PDF peak for atom i and j is given by:
FWHM;; = Sqrt(adp_scale; Ucan,i + adp_scalej Ucar,)

where Ucar is Ujj in cartesian coordinates.

1.2.2......... Multiatom approach to ADPs in PDF refinement

macro ADP_5 and ADP_7 Examples

See file PDF-ADPS.INC TEST_EXAMPLES\PDF-ADPS\
APPROX-1.INP
FIT_TO_GR.INP

In many cases, anisotropic displacement parameters in PDF refinement can be described us-
ing 5 or 7 beq type sites, we will call these descriptions ADP_5 and ADP_7. ADP_5 comprises
7 parameters instead of the normal 6 unn parameters. These ADP_5 parameters can be trans-
formed to unn parameters by fitting unn parameters to a pattern created from the ADP_5

4 New Functionality

New Functionality 5

parameters. The fit is reasonable considering the unn model has only 6 parameters. Some
main points when using ADP_5 in PDF refinement:

Number of ADP parameters become 7 instead of 6.
Broadening due to ADPs in G(r) is implied.
Asymmetry at low r is implied.

This approach works in Version 7 (albeit slower)

Asymmetry seen at low r is typically difficult to model; the ADP_n approach however implicitly
contains asymmetry. The computational effort increases as there are 7 atoms per ADP site;
this is offset by the very fast calculation of PDF patterns using beq type sites. The file PDF-
ADPS.INC contains the macros necessary for describing ADPs-7. APPROX-1.INP demonstrates
the ability of the ADPs-7 approach to describe unn models in reciprocal space. It has three
modes of operation:

1) CREATE_USING_unns: creates a simulated single crystal pattern from normal unn pa-
rameters for one atom. neutron_data is used the effects of atomic scattering factors.

2) FIT_USING_ADPs_5: fits to the simulated pattern using the ADPs-7 approach. This refine-
ment then saves the calculated ADPs-7 pattern created to afile called SIM-2.HKL.

3) DETERMINE_unns_FROM_ADPs_5: fits normal unn parameters to SIM-2.HKL.

ADP_5 sites are described in the ADP_5 macro, and it looks like:

macro ADP_5_0(s, &x0, &y@, &z0, atom, &o, &x1, &y1, &z1, &x2, &y2, &z2, &bo)

{

site s x = x0; y =y0; z = 2z0; occ atom = 0.2 o; beq = bo;
local #m_unique ns = Get(num_posns);

site s##_1p x = x0+x1; y = y@+yl; z = z0+z1; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_2p x = x0+x2; y = y@+y2; z = z0+z2; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_1m x = x0-x1; y = y@-y1; z = z0-z1; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
site s##_2m x = x0-x2; y = y@-y2; z = z0-2z2; occ atom = 0.2 (ns / Get(num_posns)) o; beq = bo;
}

Two extreme cases have been performed; results for the first case, the refined and original Uij
parameters are:

ADPs { 0.39524 0.39690 0.40143 -0.18277 -0.19009 -0.19268 } ' refined
ADPs { 0.4 0.4 0.4 -0.19 -0.19 -0.19 } ' original

The refined values, from the DETERMINE_unns_FROM_ADPs_7 operation, shows good agree-
ment with the original values. The FIT_USING_ADPs_7 operation produces a fit that looks like:

New Functionality

New Functionality 6

ul1.1u22 0.2u33 0.3 u120.03 u13 0.02 u23 0.01
600 1
500 1

400 1

Counts

300 1

200 1

100

e I b VA
10 15 20 25 30 35 40 45
2Th Degrees

A further extreme example is:

ADPs { 0.39524 0.39690 0.40143 -0.18277 -0.19009 -0.19268 } ' refined
ADPs { 0.4 0.4 0.4 -0.19 -0.19 -0.19 } ' original

The FIT_USING_ADPs_5 operation produces a fit that looks like:

ull.4u22 04 u3304u12-0.19u13 -0.19 u23 -0.19

600

500 -

400 -
5 3001
S : r

200 1

) URAANLLML

0- | ““
T A AN a0 e o Mt oo A vt vy
10 15 20 25 30 35 40 45
2Th Degrees

1.2.21 Multiatom approach to ADPs —fitting to G(r) patterns

This section generates describes the a reciprocal space pattern using unn parameters, then
generates a G(r) pattern from the simulated data. Then fits to the G(r) pattern using either
ADP_5 or Uij parameters. Additionally, a reciprocal space patterns can then be simulated us-
ing the fitted ADP_5 parameters and then finally the loop is complete with a unns fit to the
reciprocal space pattern. The final unn parameters should match the original unn parameters
reasonably well. The control parameters are as follows:

6 New Functionality

New Functionality 7

#prm generate_recip_space_pattern = 1;

#prm generate_Gr_created_from_sine_transform = 0;

#prm generate_Gr_calc_using_Uij = 0;

#prm ADP_5_fit_to_Gr_calc_using_Uij = 0;

#prm ADPs_fit_to_Gr_calc_using_Uij = 0;

#prm ADP_5_fit_to_Gr_created_from_sine_transform = 0;

#prm ADPs_fit_to_Gr_created_from_sine_transform = 0;

#prm create_recip_ADP_5_fit_to_Gr_calc_using_Uij = 0;

#prm create_recip_ADP_5_fit_to_Gr_created_from_sine_transform = 0;
#prm Fit_create_recip_ADP_5_fit_to_Gr_calc_using_Uij = ©;

#prm Fit_create_recip_ADP_5_fit_to_Gr_created_from_sine_transform = 0;
macro Append_to_File_Name { 1 } ‘' anything here to identify output files created
#prm include_resolution_broadening = 1;

These need to be executed one at a time and in sequence; they should be self-explanatory.
The main point is that the sine transform pattern created using generate_Gr_cre-
ated_from_sine_transform comprises asymmetry whereas the calculated G(r) created using
generate_Gr_calc_using_Uij does not. The former can be considered the ‘true’ G(r) pattern.
Also of importance is that the pattern created using generate_Gr_created_from_sine_trans-
form is generally better fitted using ADP_5 (or ADP_7) using than when using
ADPs_fit_to_Gr_created_from_sine_transform. The reason is that the latter does not include
asymmetry.

1.3..... Displaying partial PDFs

[str]... Examples

[pdf_partial_1 $sites] TEST_EXAMPLES\PDF\BEQ-2.INP
[pdf_partial_2 $sites]

[pdf_partial_when !E1]

Partial PDFs can be dynamically displayed each iteration of refinement or at the end of refine-
ment. A dummy structure mechanism is used as follows:

str..
‘ main PDF phase
dummy_str
phase_name "Al1 Al2 01 02 03"
pdf_partial_1 "Al1 Al2 01 02 03"
pdf_partial_2 "Al1 Al2 01 02 03"
pdf_partial_when 8 ' Only at end of refinement
dummy_str
phase_name "V1 04"
pdf_partial_1 "V1 04"
pdf_partial_2 "V1 04"
pdf_partial_when = Mod(Cycle_Iter, 2);

pdf_partial_1 and pdf_partial_2 are site identifying strings which can include the “*’ wild card
character and the negation character ‘!’. pdf_partial_when determines when to do the partial
pdf calculation; the default value is non-zero which means the calculation is performed each
iteration. A value of zero results in he calculation being performed at the end of refinement.
The BEQ-2.INP gives a GUI plot that looks like:

7 New Functionality

New Functionality 8

Partical PDFs (BEQ-2.INP)

AIVO4 0.00 %
0.8 1 Al1 Al2 01 02 03 0.00 %
06 1 V104 0.00 %
0.4 1 V ‘
L, 021 ‘ | | | WY
f oA, ¢ \/ AP i
o) |\ J /
O -021 \/ {\’ W { ‘ Y% ‘/»
04 1 \ 4
-0.6
-0.8
-1 1 ‘ ' ‘ ‘ ' ' ‘ ‘
2 4 6 8 10 12 14 16
2Th Degrees
14..... Setting A-matrix elements that must-be-zero to zero

[approximate_A_check_for_must_be_zero #n] =~ Example
XRD-CT\XRD-CT-1.INP

The approximate_A keyword uses the BFGS method to approximate the A-matrix. However, A-
matrix elements that must-be-zero can still comprise non-zero values during the BFGS
method. Aj elements that must-be-zero include cases where parameter p; and parameter p;
are from different xdd patterns.

The new keyword approximate_A_check_for_must_be_zero approximates the A-matrix using
the BFGS method, but with elements that must-be-zero set to zero. This improves conver-
gence in large problems where 1000s of xdds are being fitted with 100s of 1000s of independ-
ent parameters. Importantly, sparse matrix methods are invoked and only A-matrix elements
that are non-zero are stored. In large problems this greatly reduces memory usage. Checking
for zero A-matrix elements requires a modest amount of computational effort; to minimize
this, the check is only performed up to the n™ iteration of a refinement cycle where n is the
number defined after the approximate_A_check_for_must_be_zero keyword. After the n™" iter-
ation, A; elements that must-be-zero are set to those that were zero at the n'" iteration. Exam-
ple use is as follows:

approximate_A_check_must_be_zero = Cycle_Iter < 4;

1.5..... Stretching peaks
str... Examples
[stretch_pks E] STRETCH-PKS\STRETCH-1.INP

8 New Functionality

New Functionality 9

Refining 1000s of phases, where each has a peaks buffer that needs recalculation each itera-
tion of the refinement, can be time consuming; as in XRT-CT refinements. In fact, many peak
aberration parameters require the recalculation of the peaks buffer for each parameter deriv-
ative for each iteration of the refinement. The lor_fwhm and gauss_fwhm convolutions are two
such parameters and typical usage is via the following macros:

CS_G(@, 100)
cS_L(@, 100)

When the values of the lor_fwhm and gauss_fwhm parameters are approximately known, then
the shapes of the peaks can be approximated by stretching. For symmetric peaks the approx-
imation is almost exact; asymmetric peaks, peaks with asymmetric convolutions, are not exact
butif the values aren’t too far off optimal values then the approximation can be good. The ben-
efit of such an approximation is speed, where, using stretch_pks inthe STRETCH-1.INP example
speeds up refinement by a factor of 4.1. The usage of stretch_pks is as follows:

CS_L(100) ‘ not refined
CS_G(100) ‘ not refined
stretch_pks @ 1 min 0.001 max 10

The limits of a stretched peak, x1_s and x2_s, in terms of the unstretched limits x1 and x2, and
the peak position Xo are:

x1_s =x0 - (Xo —x1) Get(stretch_pks)
x2_s =x0 + (x2 — Xo) Get(stretch_pks)

1.6..... Reusing objects in large refinements

lat_prms $name{...}
str_dets $name{... }
phase_dets $name{...}
use{...}

Examples
TEST EXAMPLES\XRD-CT\XRD-CT-0.INP
TEST_EXAMPLES\XRD-CT\XRD-CT-1.INP

The keywords lat_prms, str_dets and phase_dets can be used to define a set of lattice param-
eters, structural details and phase details that can be used multiple times within phases with-
out recalculation of the corresponding item. The benefit is a reduction in memory usage and a
speed upinrefinementthatis substantialwhen 100s of 1000s of phases are present. Similarly,
derivatives of the common item are calculated once.

For a common phase with similar lattice parameters, then itis possible to use a commons set
of hkls. Similarly, if the structure factors of the two phases are the same but the lattice param-
eters are different (but similar) thenitis also possible to use acommon set of structure factors.
Absent the above keywords, the program automatically searches for common items in a global
manner but with restrictions. For example, strs with hkls that are not identical cannot use a
common str. However, defining the structure details in a str_dets object allows fora common
structure even when the normal set of hkls generated would be vastly different.

XRD-CT-0.INP is a two str and two xdd example that highlights the use of the above keywords.
It looks like:

9 New Functionality

New Functionality 10

Change case_ to 0, 1

#prm case_ = 1;

iters 0

lam 1la 1 1lo !lam 1 1g 8.3 ymin_on_ymax 0.001

str_dets s@ {
space_group i41/amd:2
site Zr x @ y =3/4; z =1/8; occ Zr+4 1 beq !'b1 1
site Si x 0 y =1/4; z =3/8; occ Si 1 beq !'b2 1
site 0 x 0y !yl 0.066 =z !z1 0.1951 occ 0-2 1 beq !b3 2

}

lat_prms 10 { Tetragonal(6, 4) }

lat_prms 11 { Tetragonal(5, 7) }

prm !'lor_ = Constant(0.1 Rad lam) / Cos(Th);
phase_dets pd@ { prm !'cs@ 140 min 10 max 500 lor_fwhm = lor_ / cs@; }
phase_dets pd1 { prm !'cs1 100 min 10 max 500 lor_fwhm = lor_ / cs1; }

prm 010 0.061 min -0.1 max 0.1
prm 020 0.062 min -0.1 max 0.1
prm o011 0.63 min -0.1 max 0.1
prm 021 0.04 min -0.1 max 0.1
phase_dets ze® { transform_X = 010 + 020 X + X; }
phase_dets ze1 { transform_X = 011 + 021 X + X; }

yobs_eqn aacl.xy = 1; min 30 max 60 del 0.01

out_sfn4_ycalc = "xrd-ct-00.sfn4";
bkg @ 100 -20 10
#if case_ == 0;

str scale @ 1 load use { 10 s@ pdo ze@ }
#elseif case_ == 1;

str scale @ 1 load use { 10 s@ pdo ze@ }
#endif

yobs_eqn aac2.xy = 1; min 10 max 60 del 0.01
out_sfn4_ycalc = "xrd-ct-01.sfn4";
bkg @ 100 -20 10
#if case_ == 0;
str scale @ 1 load use { 11 s0@ pd1 zel }
#elseif case_ == 1;

str scale @ 1 load use { 11 s@ pdo zel }
#endif

In the above, there are two strs and two xdds . In a real-world example this could extended to
100s of 1000s of xdds and strs resulting in an INP file comprising millions of lines. Itis therefore
efficient to define things once as is the case of lam. Modifying the preprocessor case_ #prm at
the top of the file demonstrates capabilities. The case_=1 scenario is for the following:

- Two xdds each with one str

- Thetwo strs use a common str_dets resulting in only one set of hkls being generated
and on set of structure factor.

- The lattice parameters for the two strs are different and therefore two sets are used.

- The zero errors (transform_X) are different and therefore two sets used.

- The lor_fwhm peak shape convolutions (crystallite size) are different and therefore
two sets are used.

10 New Functionality

New Functionality 11

case_=1is an unrealistic example where the lattice parameters and x-axis of the two xdds are
vastly different. The power of reusing object becomes apparent in a real-world sense where
lattice parameters, amongst similar structures, are expected to be more similar. Important
output from refinement for case_=1 is as follows:

Num data files: 2

Num hkl-sets/unique: 2 1
Num structure-factors-sets/unique: 2 1
Num m4_d2_inv unique: 1

Num peak buffers unique: 2
Num xo_ds unique: 2

Num bkg derivs unique: 2
Num transform_X/unique: 2 2
Num peak-shape-objects: 8
Num hkl_pk_dets/unique: 2 2
Num pk_sum_limits unique: 2

*** Warning: Lattice parameters not similar
but using the same structure factors

a6 and 5
b 6 and 5
c 4 and 7
al 90 and 90
be 90 and 90
ga 90 and 90

The unique items are shown in Red. Notice the warning which is due to the vastly different lat-
tice parameters. case_=2 sets the peak shapes to be the same for the two phase and the out-
put now looks like:

Num hkl-sets/unique: 2 1

Num peak buffers unique: 1

Num m4_d2_inv unique: 1

Num structure-factors-sets/unique: 2 1

Here we see one common peak buffer and thus only one is generated, and only derivatives for
its parameters are calculated. Also seen is that one set of hkls is generated. The mini-
mum/maximum x-axis values, used for the generation of the common hkls, corresponds to the
minimum/maximum values of the the start_X/finish_X and extra_X_left/extra_X_right of all the
common strs.

The example XRD-CT-1.INP refines on simulated data comprising 150,000 strs and 163,150 in-
dependent parameters. 20 iterations are completed in ~60s on an 8-core laptop. A few points
to note when running XRD-CT-1.INP:

- Turn off animated fitting in the GUI, it cannot cope with 2000 xdd files and 150,000 strs.

- Run first with “#define CREATE_” to create the simulated data. The data files are created
using the out_sfn4_ycalc keyword. This keyword outputs binary format files with a SFN4
extension. XY formats can also be outputted as well if desired.

- Do afirst run with “#define SUBSET_” to see how things look (animated graphics can be
turned on here).

- Thenremove the #define and turn off animated graphics.

11 New Functionality

New Functionality 12

- 3.1 Gbytes of memory is used.

Output from the refinement looks like:

TOPAS-64 Version 8.38 (c) 1992-20820 Alan A. Coelho
Maximum number of threads 8
Time ©0.25, INP file pre-processed
approximate_A_check_must_be_zero On
Loading xyz's for fm-3m from file C:\w\sg\fm-3m.sg
Num hkls generated for C:\w\sg\fm-3m.sg 50
Loading xyz's for fm3m from file C:\w\sg\fm3m.sg
Num hkls generated for C:\w\sg\fm3m.sg 55
Loading xyz's for i41/amd:2 from file C:\w\sg\i41oamdq2.sg
Num hkls generated for C:\w\sg\i4loamdqg2.sg 313
Num hkl-sets/unique: 150000 3
Num peak buffers unique: 3
Num independent parameters: 163150
Num data files: 2000
Num m4_d2_inv unique: 3
Num xo_ds unique: 3000
Num bkg derivs unique: 1
Num transform_X/unique: 150000 75
Num structure-factors-sets/unique: 150000 3
Num peak-shape-objects: 600000
Num stretch_pks/unique: 150000 3000
Num hkl_pk_dets/unique: 150000 3000
Num phase Ycalcs/unique (ignoring transform_X): 150000 3000
Num phase Ycalcs/unique derivs (ignoring transform_X): 150000 3000
Num pk_sum_limits unique: 3000
Num equiv posns for centrosymmetric fm-3m: 192
Num equiv posns for centrosymmetric fm3m: 192

Num equiv posns for centrosymmetric i41/amd:2: 32
0 Time 5.37 Rwp 58.064 0.000 MC 0.00 0
1 Time 7.12 Rwp 50.740 -7.325 MC 0.00 0
2 Time 11.96 Rwp 45.643 -5.096 MC 11.10 3
3 Time 15.77 Rwp 45.507 -0.137 MC 115.50 1
4 Time 19.61 Rwp 43.351 -2.155 MC 30.34 1
approximate_A_check_must_be_zero: non-zero Aij elements now static
5 Time 23.53 Rwp 25.599 -17.752 MC 8.31 1
6 Time 26.62 Rwp 24.143 -1.457 MC 30.92 2
7 Time 29.22 Rwp 14.654 -9.488 MC 8.05 1
8 Time 32.26 Rwp 14.560 -0.094 MC 269.97 2
9 Time 34.86 Rwp 14.480 -0.080 MC 68.26 1
10 Time 37.48 Rwp 13.241 -1.239 MC 17.30 1
11 Time 40.74 Rwp 5.025 -8.216 MC 4.67 1
12 Time 43.23 Rwp 4.814 -0.211 MC 19.50 2
13 Time 45.90 Rwp 4.097 -0.718 MC 5.18 1
14 Time 48.98 Rwp 4.045 -0.0851 MC 18.59 2
15 Time 51.65 Rwp 3.783 -0.262 MC 4.85 1
16 Time 54.30 Rwp 3.557 -0.226 MC 1.72 1
17 Time 56.93 Rwp 3.512 -0.044 MC 3.51 1
18 Time 59.62 Rwp 3.464 -0.048 MC 14.20 1
19 Time 62.27 Rwp 3.374 -0.090 MC 3.29 1

--- 62.270 seconds ---
File C:\w\test_examples\xrd-ct\xrd-ct-1.out updated
with parameters corresponding to best Rwp

Note the numbers in red. This is a large refinement that would not be possible without reusing
objects and without the keyword approximate_A_check_must_be_zero. This refinement

12 New Functionality

New Functionality 13

cannot be tested against Version 7 as the number of hkls alone, 62,700,000, would exhaust
much of memory.

Objects reused are:

- hkls

- lattice parameters

- Ycalc

- Peak buffers

- Structure factors

- th2_offset

- transform_X

- stretch_pks

- gauss_fwhm

- and many other common arrays such as (Sin(Th)/Lam)”2.
- derivatives for common refined parameters.

1.7..... 20 point by point calculation of f0 and beq

Structure factors for powder diffraction data typically writes beq and the atomic scattering
factor fo as a function of the Bragg angle 26,. A more accurate description can be realized us-
ing the str dependent point_by_point_beq_fo_etc which writes the structure factor in terms of
26, or, for a particular reflection h we have:

F(h,20) =4[Y ermiherse | | 3 (£,,0(20) + fiq + ifis) e Petsas* @2,

N e a

s corresponds to site s

e corresponds to the equivalent position of site s

a corresponds to atom a

Os 4 corresponds to occupancy

beq corresponds to the beq parameter

f' and f" corresponds to anomalous dispersion coefficients

This calculates fo and beq on a 28 point-by- point basis rather than 26, or d-spacing. In routine
Rietveld refinement the difference in structure factor values is small and difficult to detect. It
can however be useful for analysing nanoparticles when extreme accuracy is required. The
keyword only works with X-ray powder data and results in a slight increase in computational
effort of ~5%. Reported structure factor values using the reserved parameter names of A01,
BO1, A11 and B11 are still written in terms of the Brang angle 26, and are therefore unchanged.

1.8..... To_Prm and using an equation to define a parameter name

Parameters names can be defined using equations by placing the % character before the equa-
tion-name. For example:

13 New Functionality

New Functionality 14

Create_XDDs(3)
prm i 1
for xdds {
xdd_file = Concat("ceo2-", i, ".xdd");
str

site Cel occ Ce+4 1 beq %Concat("bCe", i); 0.2
site 01 x 0.25 y 0.25 z ©.25 occ 0-2 1 beq %Concat("b0", i); 0.4
existing_prm i += 1;

The above load three files called ceo2-1.xdd, ceo2-2.xdd and ceo2-3.xdd. Each file has a struc-
ture with two beq parameters created using the %Concat sequence. The names created are
bCe1, bO1, bCe2, bO2, bCe3 and bO3, and these names can be used in equations as per nor-
mal. If the bCe_parameters were to be equated to the bO_ parameters then the following could
be used:

site Cel occ Ce+4 1 beq %Concat("b1", i); 0.2
site 01 x 0.25 y 0.25 z .25 occ 0-2 1 beq %Concat("b1", i); 0.2

or,

site Cel occ Ce+4 1 beq %Concat("b1", i); 0.2
site 01 x 0.25 y 0.25 z .25 occ 0-2 1 beq = To_Prm(Concat("b1", 1i));

Notice the use of the To_Prm function.

1.9..... Ingesting files into an INP file using #ingest

[#ingest $file]

#ingest is a pre-processor command than copies a file into an INP file. The subsequent OUT
file will also contain the ingested file. For example:

xdd...
str..
#ingest common_str.txt

The output file will contain the ingested text with refined parameters updated. In other words,
ingested files are treated as part of the original INP file. Ingested files can be nested. $file can
be a function of macros.

1.10... #external_INP - using external INP format files

[#external_INP $file] Examples
TEST_EXAMPLES\EXTERNAL_INP\EXT_INP.INP

#external_INPis a pre-processor command than includes the file $file as part of the refinement
without ingesting the text into the INP file. On refinement termination, the extension of $file is

14 New Functionality

New Functionality 15

changed to OUT and the contents of this OUT file is updated with refined parameter values.
Example usage is as follows:

xdd...
#external _INP instrument.inp
#external _INP str.inp

An #external_INP file can contain further #external_INP commands. $file can be a function of
macros. When running Launch mode from the GUI (TA.EXE), all #external INP OUT files are
renamed to INPs if the question on termination of refinement is answered in the affirmative.

1.11... Defining hkls using use_hklm

hkls are automatically generated for str phases. This behaviour can be changed using the
use_hklm keyword such that hkls become User-defined; for example:

str..
load use_hklm {
2 2 0 12
2 2 2 8

}

1.12... Defining local parameters using $

The $ character signals that a parameter is local to xdd scope or phase scope. The following
two lines are similar but equivalent:

xdd .. local sc 0.01 min 1e-10 scale = sc;
xdd .. scale $sc 0.01

The advantage of using $ is that the default scale parameter attributes of min, max and del are
retained. The $ character can also be used with the prm keyword resulting in the parameter
being defined as local. The following two lines are equivalent:

prm Scs 100
local cs 100

Use of $ also simplifies the writing of macros when using “for { } loops. For example, the fol-
lowing:

for strs { CS_L(@, 100) }
expands to:

for strs {
prm m67cff550_1 100 min .3 max = Min(Val 2 + .3, 10000);
lor_fwhm = 0.1 57.2957795130823 Lam / (Cos(Th) (m67cff550_1));

15 New Functionality

New Functionality 16

Here, there’s only one CS_L parameter, named m67cff550_1, for all strs within the loop. If on
the other hand the intention was to have one unique CS_L for each str then the following can
be used.

for strs { CS_L(Scs, 100) }

which expands to:

for strs {
prm Scs 108 min .3 max = Min(Val 2 + .3, 10000);
lor_fwhm = @.1 57.2957795130823 Lam / (Cos(Th) (Scs));

In the above each str has one unique cs parameter due to the use of the $ character. The prob-
lem with local parameters within the for loop, is that only one cs parameters is updated in the
OUT file with the other cs parameter being lost. This situation can be remedied by using the
keyword load_save_locals.

1.13... load_save_locals - automatically saving and loading parameters

[load_save_locals] Examples
TEST_EXAMPLES\LOAD-SAVE-LOCALS \LSL.INP

Parameters given unique names using the local parameters defined within “for {}” loops can be
automatically saved and reloaded for subsequent refinements using the load_save_locals key-
word. For example,

load_save_locals
xdd...
str.. phase_name p1
str.. phase_name p2
for strs {
site Cal x Scalx 0.123 ..

}

Inthe above, there are two str’s and two local x fractional coordinate parameters defined using
the $ character. However, only one value is defined and thus only one value is saved to the OUT
file on refinement termination. load_save_locals can be used to save both refined values to a
file called INP_FILE.OUT_SL; notice the OUT_SL file extension. On rerunning the INP file, a check
is made for the existence of a file called inp_file.sl. To therefore rerun the refinement with re-
fined parameter values from the previous run then rename the INP_FILE.OUT_SL to INP_FILE.SL.
This is what the GUI does. If the INP_FILE.SL exists, then on rerunning the INP file, both x fac-
tional coordinates are reloaded from the .SL file and assigned to their corresponding x param-
eter which is identified by the xdd file name and the phase name. If the file is a RAW file, then
the range number is saved and used to identify the local parameters. Alternatively, the xdd de-
pendent keyword xdd_tag can be used to identify the parameter instead of the xdd file
name/range number. This is useful when xdd file names are the same as in the following:

16 New Functionality

New Functionality 17

XDD(..\ceo2) finish_X 50 ..
XDD(..\ceo2) start_X 50 .. ' Same file name as first xdd, need to use xdd_tag
prm i 0
for xdds {
xdd_tag = Load_Eval(i);
existing_prm i += 1;

Phase names within a particular xdd needs to be unique. The Load_Eval function evaluates the
parameter i when loading and places the value into the xdd dependent xdd_tag. A more com-
plete example, LOAD-SAVE-LOCALS \LSL.INP, defines all refined values as local and is as fol-
lows:

load_save_locals
do_errors
XDD(..\ceo2) finish_X 508 str phase_name p1 str phase_name p2
XDD(..\ceo2) start_X 50 str phase_name p3 str phase_name p4
prm i 0
for xdds {
xdd_tag = Load_Eval(Concat("tag", i)); ‘ Evaluate on load
existing_prm i += 1;
CuKa2(0.0001)
Radius(173)
LP_Factor(17)
Full_Axial_Model(12, 20, 12, 5.1, S$sl 5)
Divergence(1)
Slit_Width(@.1)
Zero_Error($8ze, 0)
bkg Sbkg © 0 0 0 ©
One_on_X(Sonex, @) ‘' This is a fit_obj phase which owns the its locals
for strs {
space_group FM3M
scale Ssc 0.001
Cubic($a 5.4102)
site Cel occ Ce+4 1 beq $b1 0.5
site 01 x 0.25 y 0.25 z 0.25 occ 0-2 1 beq Sb1 0.5
CS_L(Scs, 100)

Notice that xdd_tag can optionally be a string. The OUT_SL file for the above is comma delim-
ited and looks like:

"ze#tagd", 0.0102877916° _0.000480583326
"bkg_bkg@__#tag@", 17.434756°_1208.56088
"bkg_bkg1__#tag@", -15.6288801 _463.28484
"bkg_bkg2__#tag@", 12.6390723 _88.7458404
"bkg_bkg3__#tagl", 1.61512354 _16.6907443
"bkg_bkg4__#tag@", -3.11907939 _3.12933034
"onex#tag@", 1754.54902°_40988.0404
"sc#tagl#p1", 0.000715725375°_2.338e-06
"a#tagO#p1", 5.409464° _0.000061
"cs#tagO#p1", 231.533262° _1.80248407
"b1#tago#p1", 0.12080 _0.03691
"sc#tagO#p2", 0.000715725375°_2.338e-06
"a#tagO#p2", 5.409464° _0.000061
"cs#tagO#p2", 231.533258° _1.79979947

17 New Functionality

New Functionality 18

"b1#tag0#p2", 0.12080° _0.03691

"ze#tagl", 0.0205123273°_0.000309444241
"bkg_bkg@__#tagl", 17.7487441" _136.299446
"bkg_bkg1__#tagl", 23.0641615 _68.4730749
"bkg_bkg2__#tag1", 6.76227976°_17.3604478
"bkg_bkg3__#tagl", -0.204165325 _4.17631833
"bkg_bkg4__#tagl", 1.86174398 _1.15703296
"onex#tagl", 2167.95208°_11401.1476
"sc#tagl#p3", 0.000736910097 _2.482e-06
"a#ttag1#p3", 5.410297° _0.000013
"cs#tagl#p3", 193.208987 _0.979262806
"b1#tag1#p3", 0.25568° _0.00747
"sc#tagl#p4", 0.000736910097 _2.482e-06
"a#tagl#p4", 5.410297 _0.000013
"cs#tagl#p4", 193.208991°_0.97926241
"b1#tagl#p4", 0.25568° _0.00747

1.14... transform_x without recalculating patterns

[transform_x E] Examples
TRANSFORM_X\TPX.INP

The transform_x keyword stretches a calculated phase pattern to form a final phase calcu-
lated pattern. The following:

prm tpx @ transform_x = X + tpx Sin(X Pi / 360);

is an approximation to:

prm tpx 8 th2_ffset = tpx Sin(X Pi/ 360);

This approximation is accurate when the change in transform_Xis smooth and whenits largest
value is in the order of what is expected from XRD-CT data. For two common strs residing in
different xdds, then if th2_offset were to be used then two th2_offsets would need to be de-
fined and the formation of the summation of the peaks to the calculated pattern performed
twice. transform_X on the other hand allows for the reuse of a common calculated str pattern.
A further description is given in section Error! Reference source not found..

1.15... Tracking atomic movements graphically

[str...] Examples
[track_buffer !E] TEST_EXAMPLES\ALVO4A.INP

[site... track !E]

Atomic movements can be tracked using the site dependent keyword track. For example, the fol-
lowing:

site AL1 .. track = Mod(Cycle_Iter, 2) == 0;

will store the Al1 site position every second iteration. Doing this for every site in AlVO4 pro-
duces:

18 New Functionality

New Functionality 19

Rigid-body Editor
X Press Ctrl key to prevent docking when

Options | Loaded E»_{J 9 "Q RCY % ddragging viep o
Edit Mod ShowFade Comment
1 ~ 4 4P Structure
4> Structure
4 ¥ Structure
4) Structure
4> structure

4
4

4

4

4 4P Structure
4 4) Structure
4 4P Structure
4 4) Structure
4 4P Structure
4 4P Structure
4 4) Structure
4 4P Structure
4 4P Structure
4
0

©
<1 <1 <1< T <] LT LT LT LR RS |

4 » structure
4) Structure

Saved positions are Faded with a Fade value of 4. A Fade value of 0 does nothing; a Fade value of
10 results in black atoms. The str dependent track_buffer keyword determines the number of pre-
vious atomic positions to keep; the default value is 10.

1.16... Energy Minimization

1.16.1 Reporting on the Madelung constant
str... Examples
[madelung #] TEST_EXAMPLES\MADELUNG.INP

The madelung keyword reports on the Madelung constant of a structure (Madelung, 1918). It uses
atomic charges defined at the occ keyword, see MADELUNG.INP. #define show_GRS in MADE-
LUNG.INP creates an XY file with (S2-S1) of the GRS series set to 0.01. This is a small value that
shows the behaviour of the GRS series which is as follows (blue line):

Madelung constant for Rutile

-19.6 1

-19.605 -

-19.61 * /\/Aﬁ\//\v/—\\//—\\f

219615 -

Madelung constant

-19.62 -

-19.625 -

1 1.2 14 1.6 1.8 2 2.2 24 2.6 2.8 3
S2 (Angstroms)

19 New Functionality

New Functionality 20

With the default values of S1 =1 and S2 = 1.5; the GRS series integrates between S1 and S2 to
obtain an accurate value for the Madelung constant; this is seen in the first point of the Red
line of the above plot. In energy minimization, the derivatives of the Madelung constant as a
function of atomic coordinates constitutes the electrostatic force exerted on atoms.

1.16.2 Reporting on the Coulomb potential at a site

site ... [co #]

The site dependent keyword co reports on the Coulomb potential at a site. The sum of all co values
equates to the Madelung constant. From observation, atoms of the same species seem to have
similar co values in an ionic crystal. Note, both the co and madelung keywords are independent
of the grs_interaction keyword.

1.16.3 Enhancements to the grs_interaction
site... [gINgE sE] Examples
[repulsion_refine] TEST_EXAMPLES\
[grs_interaction [gi 'E gj 'E] $s1 $s2 ¢ !E]... ALVO4-GRS-AUTO.INP (not new)
[no_coulomb] GRS-ALVO4\SOLVE-1.INP
[penalty = Get(grs_lp_rep);] GRS-ALVO4\REP-1.INP
[penalty = Get(grs_lp_refine);] GRS-ALVO4\REP-2.INP

The site dependent keyword g reports on the difference in value between the sum of all grs_inter-
cations with the site included, and the site excluded. In other words, it reports on the site’s contri-
bution to all grs_interactions.

When repulsion_refine is defined, then all grs_interactions are placed in a “repulsion refine”
mode. In this mode, grs_interactions return the sum of the derivatives squared of the grs_in-
teractions, with respect to the atomic coordinates, or, in pseudo code:

Sum(dgrs_interaction/df;, i)?

where fi corresponds to the x, y and z coordinates of the sites associated with the grs_interac-
tion. In this manner, a refinement will adjust repulsion parameters such that the derivatives of
the grs_interactions with respect to independent repulsion parameters are a minimum.

Repulsion parameters include qi, qj, g, s and any other parameters defined in the grs_interac-
tion equation. The new site dependent keyword, s, scales the equation part of grs_interac-
tions. This simplifies the setting up of grs_interactions; consider the following:

grs_interaction qi = 3; qj = -2; Al* 0* p1 = B1 / RA7; penalty = pi;
grs_interaction qi = 5; qj = -2; V* 0* p2 = B2 / RA7; penalty = p2;
grs_interaction qi = 3; qj = 5; Al* V* p3 = B3 / RA7; penalty = p3;

Here, there are three parameters B1, B2 and B3. In the repulsion_refine mode, fractional coor-
dinates are not refined. However, their derivatives with respect to the grs_interaction

20 New Functionality

New Functionality 21

equations are expensive and are required. The site dependent s parameters can be used to
avoid this recalculation as follows:

site A1 .. q 3 s s1 1

site V.. q 5 s s21

site 0 .. q -2 s s3 1
repulsion_refine
grs_interaction * * ¢ = 1/R%9;
penalty = c;

Note the reformulation where three grs_interactions become one. Here the program examines
the equation, 1/R*9in this case, and, ifindependent of refined parameters, the program stores
the 1/R*9values for use in the calculation of derivatives of the grs_intercations equations with
respect to repulsion refined parameters. This results in a large speed up in computation. The
three parameters s1, s2 and s3 are related to the B1, B2 and B3 values as follows:

B1=s1s3
B2 =s2s3
B3 =s1s2

These parameters are related to the minimum distance R, between two isolated atomsiand,
and for the case of opposite g charges, as follows:

Uij=aiq;/R+sisj/R"
Setting the derivative to zero:
dU;j(R=R,)/dR=0
we get:

Ro= [(n-1)sis;/ (qiq)]"™"

1.16.4 Including lattice parameter in grs_interaction(s)

The default is to not include lattice parameters when repulsion_refine is defined. To include
the minimization of derivatives of the grs_interactions with respect to the lattice parameters,
the following can be used:

penalty = Get(grs_lp_rep); : O

For normal refinement (repulsion_refine not defined), lattice parameters, flagged for refine-
ment, are included in the derivatives of grs_interactions if the following is included:

penalty = Get(grs_lp_refine); : @

1.16.5 Ignoring the Coulomb part of the grs_intercation

The Coulomb part of the grs_interaction can be ignored using the no_coulomb keyword. This
is useful for materials that are not wholly ionic. Various version of the Lennard Jones potential,
for example, can be implemented; consider a potential U of:

21 New Functionality

New Functionality 22

U=A/R5+B/R"
To efficiency calculates this U, then two grs_intercations can be used:

site... g 1 s @1
site... g -1 s @ 1
grs_interaction .. = 1 /R*4; no_coulomb
grs_interaction .. = 1 /R"9; no_coulomb

Here, 1/R™4 and 1/R*9 values are stored in lookup tables which are calculated once at the
start of refinement. This potential is used in describing the partly ionic structure of AlVO,, see
GRS-ALVO4\REP-2.INP.

The grs_interaction equation can also be set to zero. This may be useful when looking at dipole
properties of a molecule where the centre of the electron cloud is at a different position from
the nucleus, for example:

site Al1 x x1 #y vyl # 2z z1 # ..
site Al1_shift x = dx1 x1; y = dy1 + y1; z = dz1 + z1; ..
grs_interaction .. A11 = 0; ‘ No repulsion equation

grs_interaction .. Al11_shift = 1 /R*9; no_coulomb ‘ No Coulomb potential

1.16.6 _rem attribute - Removing/inserting parameters from refinement

The _rem parameter attribute is an equation that is evaluated at the start of a refinement iter-
ation (note: attribute equations cannot be named). If non-zero, the associated parameter is
removed from refinement for the duration of the iteration. The parameter can be reinstated in
subsequent iterations if _rem evaluates to zero; for example, to reinstate the parameter after
convergence and into a new Cycle, the following could be used:

prm a 1 _rem = Mod(Cycle, 2);

1.16.7 Using ok_to_continue and _rem

In version 7, the ALVO4-GRS-AUTO.INP test example was the fastest way of solving the AlVO,
structure. In that example, the scattering power of the Al and V sites are allowed to refine
within the scattering power range of Al+3 and V+5. An alternative to refining on the Al+3 occu-
pancies, is to fix the occupancies for a certain number of Cycles and then change the occu-
pancies on the Al+3 site without actually including them in the refinement. This is accom-
plished using the new keywords of ok_to_continue, g, s and the new _rem parameter attribute;
it works as follows (see GRS-ALVO4\SOLVE-1.INP for details):

macro qal { 3 } ‘' Charge of Al+3

macro qv { 5 } ‘' Charge of V+5

macro exp { 9 } ' Repulsion exponent

macro ro_al { 1.65 } ‘ Ro values from bond distances

macro ro_v { 1.5 }

macro ro_oo { 2.4 }

‘ Change Ro values to s values

22 New Functionality

New Functionality 23

prm !so = Sqrt((4 ro_oo”(exp-1)) / exp); : 22.1184
prm !sal = ((ro_al*(exp-1)) 6 / exp) / so; : 1.65587133
prm !'sv = ((ro_vA(exp-1)) 10 / exp) / so; : 1.28746033

macro S_ { If(Get(q) == gal, sal, sv) }
macro OCC { If(Get(q) == qal, 1, 1.85) }

macro VV { rand_xyz 1 } ‘ Randomize sites at start of cycle

macro VQ { _rem 1 val_on_continue = If(Mod(Cycle,10), If(Rand(@,1)<0.5,qal,qv), Val); }
prm g1 gal VvVQ

prm g2 gal VQ

prm g3 gal VQ

prm q4 qv VQ

prm q5 qv VQ

prm g6 = 3 gal + 3 qv - q1 - g2 - g3 - g4 - q5;

‘ Ensure scattering power equals 3*Al sites plus 3*V sites
ok_to_continue = 0r(q6 == qal, q6 == qv);

Grs_(*, *, exp, @) ‘ grs_interaction penalty

site Al xX@ 0.0 y@ 0.9 z @ 0.8 occ A143 = 0CC; q = q1; s = S_; VWV
site Al x@ 0.1 y@ 0.0 z @ 0.9 occ A143 = 0CC; q = gq2; s = S_; VV
site Al x@ 0.2 y@ 0.1 z @ 0.0 occ A143 = 0CC; q = q3; s = S_; VV
site Al x@ 0.3 y@ 0.2 z @ 0.1 occ A143 = 0CC; q = gq4; s = S_; VV
site Al x@ 0.4 y@ 0.3 z @ 0.2 occ A143 = 0CC; q = g5; s = S_; VWV
site Al x@ 0.5 y@ 0.4 z @ 0.3 occ A143 = 0CC; q = gq6; s = S_; VV
site 01 x@ 0.6 y@ 0.5 z@ 0.4 occ 0-21q -2 s =so; VV
site 02 x@ 0.7 y@ 0.6 z@ 0.50cc 0-21q -2s =so; VW
site 03 x@ 0.8 y@ 0.7 z@ 0.6 occ 0-2 1 q -2 s = so; VW
site 04 x@ 0.9 y@ 0.8 z@ 0.7 occ 0-21q -2 s =so; VW
site 05 x@ 0.0 y@ 0.9 z@ 0.8 occ 0-21q -2 s =so; VW
site 06 x@ 0.1 y@ 0.0 z@ 0.9 occ 0-21q -2 s =so; VW
site 07 x@ 0.2 y@ 0.1 z@ 0.0 occ 0-21q -2s =so; VW
site 08 x@ 0.3 y@ 0.2 z@ 0.1 occ 0-21q-2s =so; VW
site 09 xX@ 0.4 y@ 0.3 z@ 0.2 occ 0-21q-2s =so; VW
site 016 x @ 0.5 y@ 0.4 z@ 0.3 occ 0-2 1 q -2 s = so; VW
site 011 x @ 0.6 y @ 0.5 z @ 0.4 occ 0-2 1 q -2 s = so; VW
site 012 x @ 0.7 y@ 0.6 z @ 0.50cc 0-21q -2s =so; VW

The above will change the scattering power on the Al* sites every 10" Cycle as defined in the
VQ macro. Note, there’s only one grs_interaction and the Grs_ macro looks like:

macro Grs_(s1, s2, & n, V)

{
grs_interaction s1 s2 #m_unique c =
If (R < rsm,
((-n rsm*(-2 - n)/2) R*2 + rsm*(-n) + n/(2 rsm*n)),
1/ R*n
);
penalty = ¢; : v
}

SOLVE-1.INP operates in three modes which can be chosen by the two control parameters (in
Red) in the INP text at the top of the file and is as follows:

23 New Functionality

New Functionality 24

continue_after_convergence
#prm penalties_only_start_at_Rietveld_positions = 1;
#if penalties_only_start_at_Rietveld_positions;
only_penalties
verbose 1
temperature 0.5 use_best_values
#else
#prm solve_using_real_data_and_penalties = 1;
#prm solve_using_penalties_only = solve_using_real_data_and_penalties == 0;
verbose -1

num_runs 10 Solve structure 10 times, change to 1 to see solution

#if solve_using_real_data_and_penalties;
' Minimum energy at 5%
temperature = If(Mod(Cycle, 2060), 0.7, 10);
iters = If(And(Cycle_Iter > 2, Get(r_wp) < 8), 0, 1000000000);
#endif
#if solve_using_penalties_only;
' Minimum energy at -423.5
only_penalties
temperature = If(Mod(Cycle, 2060), Rand(0.35, 0.7), 10);
iters = If(And(Cycle_Iter > 2, Get(r_wp) < -423), 0, 1e9);
#endif
#endif

Running SOLVE-1.INP with penalties_only start_at_Rietveld_positions=1 refines on the atomic
coordinated with only_penalties defined. It also displaces the atomic positions by an amount
of rand_xyz*temperature, or, 0.5 A in a random direction at the start of each cycle. As can be
seen whilst running, the structure returns to the Rietveld refined values after each cycle.

Running SOLVE-1.INP with solve_using _real_data_and_penalties=1 solves the structure 10
times and the Rwp plot looks like:

Solve-1.inp,/data and penalties
50
45
40
35

Rwp (%)

s0 L

. |
25 AL L wiin i - I
15
10

0 200 400 600 800 1,000 1,200 1,400
Iteration

This is similar to ALVO4-GRS-AUTO.INP which refines on occupancies. ok_to_continue is eval-
uated at the start of each iteration. If it evaluates to zero, then val_on_continue of its independ-
ent parameters are executed. The process is repeated until all ok_to_continue(s) evaluates to
non-zero. Note, more than one ok_to_continue can be defined.

24 New Functionality

New Functionality 25

1.16.8 Energy minimization-only resulting in the observed structure of AlVO4

Running SOLVE-1.INP with solve_using_real data_and_penalties=0, achieves a minimum en-
ergy configuration that matches the Rietveld refined structure. only_penalties are refined; lat-
tice parameters are not included. Even though AlVO, is partly ionic, the maximum atomic dis-
placement at the energy minimum compared to the Rietveld refined positions is relatively
small at~0.22 A with an average movement of ~0.14 A. In other words, the energy minimization
“pseudo-solved” the structure from a crude atomic interaction model.

Including lattice parameters as refinable parameters results in non-sensical atomic coordi-
nates which means that the atomic interaction model is inadequate in a physical sense.

1.16.9 Determining repulsion parameters for AlVO4

REP-1.INP performs three types of operations/refinements as seen by the self-explanatory con-
trol statements at the top of the file of:

#prm determine_repulsion_parameters = 0;
#prm test_rep_prms = 0;
#prm bond_length_differences = 0;

Setting determine_repulsion_parameters=1 fixes the atomic coordinates to Rietveld refined
values and then minimizes dU;/dfi=0 for AlVO, by varying three s repulsion parameters of sal,
svand so where:

Uij=qu]j/R+SiSj/R9

As seenin REP-1.INP, the sum of the derivatives squared of dU/df; (where fiis a fractional atomic
coordinate) do not refine to zero. This is seen in the lines:

Grs_(*, *, 9, 0.465098047")
penalty = Get(grs_lp_rep); : 2.6397897°

Also, seen in REP-1.INP is that the R, values (distance between two isolated atoms) seem too
large as in:

prm !'ro_alo = ((exp-1) Abs(sal so qal qo))~(1/(exp-1)); : 2.18729482
prm 'ro_vo = ((exp-1) Abs(sv so qv qo))*(1/(exp-1)); : 2.4673052
prm 'ro_oo = ((exp-1) Abs(so so qo qo))*(1/(exp-1)); : 2.73559269

Performing another refinement with the three determined repulsion parameters sal, svand so
fixed, and instead refining on the atomic coordinates (test_rep_prms=1) results in a structure
with average atomic movements of 0.14 A from the Rietveld coordinates. The movement can
be seen in the following Al octahedron (lighter atoms are the Rietveld determined positions):

25 New Functionality

New Functionality

Setting test_rep_prms=1 and output_U_vs_a=1 executes the INP code of:

#if And(output_U_vs_a, test_rep_prms);
verbose 1
num_runs 100
iters 0
a = Ramp_Run_Number(6.54131-3, 6.54131+3, Get(num_runs));
out a.xy append
Out(Get(a))
Out_String(" ")
Out(Get(non_fit, r_wp))
Out_String("\n")
#else
a 6.54131
#endif

This produces the XY file of:

U versus a lattice parameter

-250 1
-300 +

-350 1

U (au)

-400 -

-450 |

4 5 6 7 8
a lattice parameter (Angstroms)

26 New Functionality

26

New Functionality 27

Here we see that the observed a lattice parameter of 6.54131 Ais far from the minimum; this
was evident from the non-zero value for Get(grs_lp_rep) as seen above. Note the use of
Get(non_fit, r_wp) instead of Get(r_wp); the former gets the global Rwp and the latter the xdd
dependent Rwp. Use of only_penalties does not update xdd dependent Rwp(s); hence the
need to Get the global r_wp.

Lattice parameters were not refined in performing the test_rep_prms=1 operation; they could
have been with the inclusion of the line:

penalty = Get(grs_lp_refine); : 0

The refinement in such a case would have produced very incorrect results as indicated by the
U versus a plot above. This demonstrates that a simple Coulomb sum and 1/R*9 repulsion
term does not fully describe AlVO, and that another modelis needed.

1.16.10...... A non-ionic model for AlVO4

Instead of using the Coulomb sum, a 1/R"4 term was used for atoms of opposite charge (Al-O
and V-0) and a 1/R*9 for like charges, or,

Uij=Ay/ R + Bij/Rg

This U choice was a guess and there may well be more physically meaningful models available.
The following however does highlight the ability to quickly model such cases. The REP-2.INP
test example uses this potential and it has three operational/refinement modes:

#prm repulsion_refine = 0; set to @ or non-zero
#prm bond_length_differences = 0;

#prm test_repulsion_prms = repulsion_refine == 0;

set to @ or non-zero

Refining with repulsion_refine=1 results in a low value for grs_Ilp_rep and for grs_interactions:

penalty = Get(grs_lp_rep); : 0.000423118927"
Grs_(Al*, O*, ea, -a_alo, 0.000824217622")
Grs_(V¥*, 0*, ea, -a_vo, 0.00103650359")
Grs_(0%*, 0*, ea, a_oo, 0.000721564661 ")
Grs_(Al*, Al*, ea, a_alal, 6.000102652961")
Grs_(Al*, V*, ea, a_alv, 0.000417591887")
Grs_(V*, V*, ea, a_vv, 0.000314938926")
Grs_(Al*, 0%, er, b_alo, ©.000824217622)
Grs_(V*, 0%, er, b_vo, ©.80103650359)

Grs_(0%, 0%, er, b_oo, ©0.800721564661)
Grs_(Al*, Al*, er, b_alal, 0.000102652961)
Grs_(Al*, V*,6 er, b_alv, 0.000417591887)
Grs_(V*, V*, er, b_vv, ©0.800314938926)

These are low values compared to those obtained for REP-1.INP and it indicates near zero val-
ues for (dgrs_interaction/dfi)? where fiis a fractional atomic coordinate or lattice parameter.
The difference in lattice parameters between the observed values from Rietveld refinement
and the energy minimization of REP-2.INP is:

Aa = 0.353377, Ab = 0.387755, Ac = 0.501125

27 New Functionality

New Functionality 28

Aal = -0.92222, Abe = -8.32539, Aga = -0.77862

The maximum bond length difference is 0.18 A with an average difference of 0.08 A.

1.17... Molecular dynamics (MD)

molecular_dynamics Examples
md_time_step 'E (default =0.002) TEST_EXAMPLES\GRS-ALVO4\
md_time 'E MD-1.INP
md_scale !E (default=1) MD-2.INP
New parameter attributes: MD-3.INP
_md_k!E (default=1) MD-4.INP
_massE (default=1) GRS-0.INP

_md_force !E (default =0)

1.17.1 Molecular dynamics in a general manner

Defining molecular_dynamics (MD) places the program in a non-refinement mode where pa-
rameters of any type can be updated in a time dependent manner. The Verlet (1967) algorithm
is used for updating parameters. In the present implementation, parameters that are not typi-
cally associated with molecular dynamics can be updated in a MD manner. This is accom-
plished with the use of the parameter attributes of _md_k and _md_mass.

Molecular dynamics is basically the steepest decent method of refinement but with new pa-
rameters values accepted regardless of the change in the objective function (Rwp in the case
of TOPAS), or, relating this to the Newtonian equations of motion for iteration k and parameter
p, we have:

Force(k) = m a(k) = dRwp/dp
Velocity(k+1) = Velocity(k) + (dRwp(k)/dp) / m
In the Verlet algorithm, velocity is not considered explicitly and instead p is updated as follows:
p(k+1) =2 p(k) - p(k-1) + a(k) t?
=2 p(k) - p(k-1) + (1/m) (dRwp(k)/dp) t*

where t is the time step of the molecular dynamics. The mass m is set using _mass. To intro-
duce flexibility, the present implementation allows modifications of p(k+1) as follows:

p(k+1) = (p(k) = p(k-1) + (_md_k/ _mass) (dRwp(k)/dp) t3) md_scale + p(k)

This equates to the Verlet algorithm with the default value of 1 for _md_k, _mass and
_md_scale. md_scale is a means of increasing or decreasing atomic movements (increasing
or decreasing temperature).

28 New Functionality

New Functionality 29

1.17.2 Molecular dynamics for atoms

In the absence of the _mass attribute, mass is determined from the masses found in the ISO-
TOPES.TXT file for site occupancies, as defined by the occ keyword, and weighted by the occ
values. In the absence of the _md_k attribute, md_k is determined for x, y and z coordinate
parameters as follows:

md_k for x = ax
md_k fory = by
md_kforz=cz
where ax=1
bx = Cos(Get(ga) Deg)
by = Sin(Get(ga) Deg)
cx = Cos(Get(be) Deg)
cy = (Cos(Get(al) Deg) - cx bx) / by
cz=3qgrt(1.0 - cx*2-cy”"2)

The following two sites are therefore equivalent:

site Al
X @ # _mass = 26.981; _md_k = ax;
y @ # _mass = 26.981; _md_k by;
z @ # _mass = 26.981; _md_k cz;
occ Al+3 1

‘ and
site A1 x @ # y @ # z @ # occ Al+3 1

The use of _md_k corrects the forces in case of non-orthogonal lattice parameters. grs_inter-
action can be used to calculate the forces for molecular dynamics; this is demonstrated in
MD-1.INP. The display of the Rwp plot in the Fit dialog can take a lot of processing for long MD
runs; not displaying the plot can speed up the simulation; and imilarly for the OpenGL 3D
graphics.

MD-1.INP operates in the P-1 space group; this can be changed to P1 by outputting the frac-
tional coordinates in P1 as follows:

pl1_fractional_to_file aac.txt
in_str_format
in_cart 0
na2nb 2 nc 2

Here, a 2x2x2 unit cell is outputted in P1 to the AAC.TXT file. MD-2.INP describes such a unit
cell comprising 288 atoms. One of the AL1 atoms is offset, and running the MD simulation re-
sults in the atom returning to its lowest energy configuration position. This return to the opti-
mal position is due to the small offset of 2.92 A. The following shows the starting configuration:

29 New Functionality

New Functionality 30

Phase

E‘_/) e _b N t 1 E ‘ & ‘go Q / n Z::sgs;:‘rglkey\o prevent docking when

z_matrix Hil:@
z_matrix gAll: Hil:0 2.9212

where the yellow atom is the Al1 atom’s offset, and the dark grey atom is the original position
of the Al1 atom. It is informative to watch the yellow atom migrate to the dark grey atom. The
INP text that produces the coloured Al1 sites is:

track_buffer 100
site gqAl1 x ©.37342 y 0.34930 z 0.20369 occ Al+3 1 ' original posn
site Hi1 x @ 0.2 y @ 9.2 z @ 0.1 occ Al+3 1 track = Mod(Cycle_Iter, 20) == 0;

The colours for the Al1 and Hilsites is seen in the ATOM_COLORS.DEF file; this file can be ed-
ited for the purpose of changing atom colours. The original atom gAl1 does not take partin the
only_penalties MD simulation as it is absent from the grs_interactions. The path of the Al1
atom looks like:

30 New Functionality

Rigid-body Editor

Options Loaded

Edit Mod Show Fade

59 v 4
60 4
61 v 4
62 v 4
63 v 4
64 v 4
65 v 4
66 v 4
67 v 4
68 v 4
69 v 4
70 v 4
71 v 4
72 v 4
73 v 4
74 v 4
v 4

v 4

77 v 4
78 v 4
79 v 4
80 v 4
81 v 4
82 v 4
83 v 4
0

84

4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4

New Functionality 31

Press Ctrl key to prevent docking when

@V 2B B OV A O > s

Comment
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

Note the last display has been disabled (item 84); it comprises all 288 atoms in the cell. In-
cluding line 84 produces:

Rigid-body Editor

Options Loaded

Edit Mod Show Fade

59 v

~
S |0 o

L T N N N N N N S N S S N N N N N S N N N N NS

SESESE] SESHSESESESESE S SE LSS SE LSS SE ALK S

0 [0 | [0 |0 |~
w R

=

4»
4
4
4
4»
4»
4
4
4»
4
4»
4
4»
4»
4
4
4
4»
4
4
4
4»
4»
4»
4»
4

@ ‘9 ® 'ﬁ @ O% 000 Q / A EZ:sgsgCi’:gkeyto prevent docking when
Comment
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure
Structure

31 New Functionality

New Functionality 32

MD-3.INP moves the Al1 atom 4 A from the original position and in a random direction; the
pertinent INP text is:

temperature 1
md_scale = If(Cycle_Iter < 2, 0.1, 1);
site Hi1 x @ ©0.37342 y @ 0.34930 z @ 0.20369 occ Al+3 1 rand_xyz 4

Clicking on the Break icon; ie.

e,

i

Py

el

executes rand_xyz. Often the energy of the system (which is kept constant) is too great and the
MD goes chaotic. This behaviour can be damped using md_scale as seen above. Also, repul-
sion terms such as 1/R® can be very large when R is small; such small bond distances are un-
realistic and modifying U; to avoid large values is beneficial. In the present work the equation
used for the grs_interaction, rewritten in terms of a yobs_eqn, is given in GRS-0.INP, or,

macro & n { 9 }
macro & q { -1 }
macro & ro { 2 } ‘ x-axis value at the minimum
macro & rsm { 1 }
yobs_eqn aac.xy =
If (X < rsm,
(Abs(q) / n) (ro*(n-1)) ((-n rsm*(-2 - n)/2) X*2 + rsm”(-n) + n/(2 rsm’n)),
(Abs(g) / n) (ro*(n-1)) / X*n + q / X
)
min 0.1 max 7 del 0.01

Note, the rsmvalue of 1. For R<rsm, U is modified such that large values are not encountered.
The following shows two views of the same yobs_eqgn plot:

UvsR UvsR
150 A -0.15 A
-0.2 1
5 1007 5 025]
= = 031
® 501 ® 035
-04 1
1 2 3 4 5 2 3 4 5 6
R (Angstroms) R (Angstroms)

1.17.3 Applying a force on atoms

The _md_force attribute can be used to apply a force to atoms. The MD simulation in such a
case maintains energy conservation by adjusting the kinetic energy of the system. For the case
of AlVO, and for the crude potential used; it is interesting that for a force along the a-axis on an
Al+3 atom, the structural integrity is maintained as seen below (see MD-4.INP):

32 New Functionality

New Functionality 33

Phase

M@ P »Y B HP VI ARADB O = Press Ctrl key to prevent docking when

dragging

The structure, however, loses its integrity for a similar force along the c-axis.

1.18... Cross correlation function

[cross_corr $name #value Examples
cross_corr_s IE CROSS-CORR\CROSS.INP

cross_corr calculates the cross-correlation function for a triangle of x-axis width cross_corr_s.
cross_corr_s can be an equation that can be a function of Cycle_Iter which allows for changing
the width of the triangle in situ. $name is a name that can be given to the function and #value
is the value of the cross-correlation function. $name can be used in the chi2 keyword for ob-
taining lattice parameters. However, as can be seen in the example CROSS.INP, using normal
refinement with a triangle convolution is much faster than using the cross-correlation func-
tion. CROSS.INP is an informative example and it looks like:

#prm USE_CROSS_CORRELATION = 1; ‘ Set to zero to see normal refinement

#prm INCLUDE_HATS = 1; ‘ This is for normal refinement

macro DEL_ { Rand(-1, 1) 8.5 } ‘ Change in lattice parameters at the start of a Cycle
macro AA { }

continue_after_convergence
verbose 1

iters 2000

RAW(. .\pbso4)
rebin_with_dx_of 0.01

33 New Functionality

New Functionality 34

CuKa5(0.0001)

LP_Factor(17)

Radius(173)

Full_Axial_Model(18, 10, 18, !sol 3.77616°, !sol 3.77616")

Divergence(1)

Slit_Width(0.2)

bkg AA -792.524948 767.974856 -305.050785 121.658117 -45.020282 18.2136589
One_on_X(AA, 22265.9137")

ZE(AA,-0.0110740988)

finish_X 60
extra_X_right 10

#if (USE_CROSS_CORRELATION)
cross_corr corr 0
cross_corr_s 3
chi2 = -Ln(corr); : 0
macro SCALE_ { }
#else
' Normal refinement
#if (INCLUDE_HATS)
hat @ 1 val_on_continue 2 max 2 num_hats 2
#endif
macro SCALE_ { @ }
#endif

STR(P_b_n_m) ' PbS04

space_group P_b_n_m
macro LP_(v) { v val_on_continue = v + DEL_; min = v - 3; max = v + 3;
a @ LP_(6.962377)

b @ LP_(8.483133)

c @ LP_(5.400478)

site Pb AA 0.16717 y AA 0.18778 0.25 occ Pb+2
site S AA 0.18429 y AA 0.43563 z 0.75 occ S

X z beq AA 1.47495
X z

site 01 x AA 0.89441 y AA 0.59667 z 0.75 occ 0-2
X z
X z

beq AA 0.85254
beq AA 1.05681
beq AA 1.63474
beq AA 1.49181

site 02 x AA 0.03611 y AA 0.31151 0.75 occ 0-2
site 03 x AA 0.31549 y AA 0.42069 z AA 0.97553 occ 0-2

= A A a

CS_L(AA, 274.77)
Strain_L(AA, 0.035898)
scale SCALE. 0.000335087199

Running cross.inp with USE_CROSS_CORRELATION set to 1 gives an Rwp plot of:

Launch Mode: C:\w\test_examples\Ccross-corr\cross.inp
i

500

l h N [hy] |

L

w
L

=

HCR LTI I TR e T Wﬂ J\\ |
|

|

300 ‘

200 l \l\
1]
i

AT s G A |
H‘ I l\ \

100

|
I
I 0 A
(LA A A A LI]

800 1,000 1,200 1,400 1,600

|
l

0 200

\ |

|
|
L

1,800 2,0

Running cross.inp with USE_CROSS_CORRELATION set to 0 (normal refinement) gives an Rwp

plot of:

34 New Functionality

New Functionality 35
o i
[OTTT e O e \ L LT [
35 New Functionality

2. ..MISCELLANEOUS

2.1..... User defined phase colour, line width

Miscellaneous 36

and point size (_clp)

_clp #red #green #blue #line_width #point_size

Examples
TEST_EXAMPLES\ZRO2.INP

The colour, line width and data point size of phase plots

can be entered in INP files using the

phase or bkg dependent keyword _clp. The first three numbers correspond to red, green and
blue colour weightings with value ranging between 0 and 1. #line_wdith and #point_size can
be between 0 and 15. The file COLOURS.INC contains standard colours. Example usage is as

follows:

#include colours.inc
bkg ..

_clp 0.5 0.5 0.5 3 2 ' Grey with a line width of 3 and a data point size of 2

Sitlfes

_clp 8.206.21180 ‘ Blueish with a line width of 1 and a data point size of ©

fit_obj !fs = 1000 X;
Plot_Fit_Obj(fs, Some_bkg)

_clp Blue 2 2 ‘ Blue colour from colours.inc

2.2..... Display hkl ticks on Surface plots

hkl ticks with z-axis height can be displayed on surface plots as seen in the following for
\TEST_EXAMPLES\JE-PARA\D8_02999_35_ANNOTATE_04.INP:

200 1
180 1
160
140 -
120 1
100 1
80 1
60 1
40 4
20 1

535 54 545 55 55.5 56

And in PlanView:

36 Miscellaneous

57 57.5 58 58.5 59 59.

Miscellaneous 37

3,500
3,000 A
2,500

2,000 *

i

1,500 4 =
1,000 A

500 A

52 53 54 55 56 58 59 60

2.3..... hkl ticks are now corrected for zero errors

The display of hkl ticks in Surface or 1D plots are now corrected for th2_offset or transform_X.
The corrected PlanView plot shown above, when uncorrected, looks like:

3,500;
3000{ ¢
2,500@] '
2,000 -
1,500{ i
1,000 -
soo{

52 513 - 5I4 | | 5|S | 5I9 | 6|0
24..... Highlighting/displaying phases and hkl tick marks

Highlighting a phase in a multi-phase pattern or patterns, can be performed in a many ways:

- Displaying phase names on the right of the plot window and moving the mouse over the
phase name.

- Clicking onthe row of the hkl tick marks. This displays the associated phase and tick marks
highlighted, for example:

37 Miscellaneous

Miscellaneous 38

| | | |
|
| [(333) d=1.58857, (511) d=1.58857] - |
-80 - ' | ' |
| 1 . . |
53 54 55 56 57 58 59

If individual phases are displayed using M , then moving the mouse over the pattern high-
lights the pattern as well as ticks marks associated with the phase.

If there are too many tick rows, then the program displays all phase ticks from all patterns in
one row. Moving the mouse close to a tick mark, displays tick mark information on the screen
as well as displaying the associated range name on the status bar. Additionally clicking the left
mouse button on a phase tick mark, highlights all tick marks associated with that phase, and
additionally displays the phase pattern itself highlighted; for example:

120 A
100 A

[2rP207: (5 11) d=159131, ZrP207: (33 3) d=159131] o | |

A 11 1, .
55.5 56 56.5 57 575 58 58.5

hkl tick marks are also now displayed in 2D-Offset mode as seem in the following:

38 Miscellaneous

Miscellaneous 39

1,600 -
1,500 -
1,400

Lt

1,200 A RYPRRRTRINN R o " Lol oed .
I R N R R IR RN T

li M_{lk JH.M MJ“JL NI N

A [ol L.

Pal Do e a4y 4yAR03@202) dU1IB56 iy e |4

1,100 A

1,000 -

900 am ‘A‘ n
800

700 -

600 -

500 -

400 4

Sewmiddartade .

300 A T N A N NN A TN N A A A B TR
200 -

100 -

Jl msshinathdun N A

, N L il " e R o b
-100 A | | L1 A RN N BN AR TR RN R T A W R A R IR A
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

In 2D-offset mode, ticks marks from a particular pattern are placed on a common tick mark
row. Clicking on an individual tick mark, highlights all ticks marks from the corresponding
phase and highlights and displays the corresponding phase pattern. As in the non-2D-offset
mode, a phase pattern and its associated tick marks are highlighted when the mouse is close
to the phase pattern.

25..... gui_text keyword now ighored by the kernel

For the commercial version of TOPAS, the gui_text keyword allows for INP format text to be
used in GUI mode refinement. Previously, use of gui_text within INP files in Launch mode threw
an exception. Version 8 does not throw an exception; instead, the keyword is ignored but with
the INP text within the gui_text block included in the refinement. The means that INP files are
GUI mode compliant and moving between GUI and Launch mode becomes a smooth opera-
tion. For example, the following INP file can be run in both Launch and GUI modes without
modification:

XDD(ceo02)
CuKa5(0.00601)
Full_Axial_Model(12, 20, 12, 5.1, sl 5)
Radius(173)
LP_Factor(17)
Divergence(1)
Slit_Width(@.1)
bkg @0 00080
Zero_Error(@, 0)
gui_text {
prm bo @
prm b1 @
fit_obj = b0 + b1 (X2-X1) / 2;
}

str

39 Miscellaneous

Miscellaneous 40

space_group F_M_3_M
scale @ 0.001
Cubic(@ 5.410)

site Cel occ Ce+4 1 beq 1
site 01 x 0.25 y 0.25 z 0.25 occ 0-2 1 beq 1
CS_L(@, 100)

MVW(0,0,0)

2.6..... Outputting special characters

The characters ,(){}[] can be outputted to text files by enclosing them in double quotation
marks. For example:

out aac.txt
Out_String("a,b}c(d")

To output a single apostrophe or double quote character, the escape sequences of %A and
%B can be used respectively, for example, the following:

do_errors
prm b -0.61427_0.01048
out aac.txt
out_record
out_fmt "%V g[h%Bh"
out_eqn = b;
out_record
out_fmt "\n%s%A (brack}et"

out_eqn = "abc";

produces in the AAC.TXT file:

-0.614(10) g[h"h
abc' (brack}et

The escape sequences themselves can be outputted by using two separate out_records. For
example, to output %A use:

Out_String(“%")
Out_String(“A")

2.7..... Iterating over internal data-tree nodes using ‘for’

‘for’ can be used to iterate over all nodes of the internal data tree. For example, to iterate over
the site_recs node the following can be used:

for site_recs {
beq @ 1

40 Miscellaneous

Miscellaneous 41

2.8..... Command prompt output during INP file loading using print

The keyword print is executed during the loading of INP files; it is useful for determining when
an item is loaded for debugging purposes. For example:

print(“Executed during the loading of INP files"”)
#prm a 1.234
print(#out a)

2.9..... Sorting output by columns using _sort_dec or _sort_inc

Columns can be sorted in ascending or descending order using _sort_inc or _sort_dec respec-
tively. For example, the following can be used to sort by d-spacing in descending order and then
by |_no_scale_pks in ascending order:

xdd. ..
str...
phase_out aac.txt

out_record
out_fmt " d = %9.5f"
out_eqn = D_spacing; _sort_dec 1

out_record
out_fmt " I_no_scale_pks = %9.5f"
out_eqgn = I_no_scale_pks; _sort_inc 2

out_record
out_fmt " 2Th = %9.5f\n"
out_eqn = 2 Rad Th;

2.10... Creating many xdds at once using new and xdd_file
The new keyword can be used to create many xdds at once, for example:

macro Create_XDDs(n)

{
move_to xdds
move_to xdd_recs
new(xdd, n)

See section 1.1 for usage of the macro Create_XDDs.

2.11... seed, #seed_eqn, seed-tc.txt, seed-th.txt, Rand

If using the command line TC.EXE, then seed increments the number in the file SEED-TC.TXT to
seed the random number generator and then saves the incremented value back to SEED-
TC.TXT file. If using the GUI version of the program TA.EXE, then the number in the file SEED-
TB.TXT is used. #seed is similar except it is executed at the pre-processor stage of loading INP
files. If a number occurs after either seed or #seed then the random number generator is
seeded with that number.

41 Miscellaneous

Miscellaneous 42

#seed_eqgn seeds the random number generator at the preprocessor stage with the equation
value; here are examples:

#seed_eqn seed_1 = Rand(@,32767);
prm value_fed_to_random_number_generator = #out seed_1;
#seed_eqn seed_2 = Run_Number;

The rand function of c++ returns integers between 0 and 32767. To increase the dynamic range,
the function Rand returns a random number between two floating point numbers r1 and r2, in
c-code, as follows:

double Rand(double r1, double r2)

{
const double cB® = 1.0 / double(RAND_MAX) ;
const double c1 = 1.0 / (1.9 + double(RAND_MAX));
return (rand() + rand() * c@) * c1 * (r2 — r1) + r1;
}

2.12... Getting the number of items in a #list using #list_n

During the pre-processor phase of loading INP files, #list_n, a new pre-processor command,
returns the number of items in a #list; for example:

#list Files { filel.xdd file2.xdd file3.xdd }
Create_XDDs(#list_n Files)

2.13... out_prm_vals_on_end

In addition to out_prm_vals_per_iteration and out_prm_vals_on_convergence, the new key-
word, out_prm_vals_on_end, allows for output only at the end of refinement, for example:

str..
prm wtp = Get(weight_percent);
out_prm_vals_on_end aac2.txt append
out_prm_vals_filter wtp
out_prm_vals_dependents_filter wtp

The following example shows how to add items to the out_prm_vals_on_end file.

#list Files { filel.xy file2.xy }
num_runs #list_n Files
do_errors
out_prm_vals_on_end results.txt #if (Run_Number > 0) append #endif
xdd Files(Run_Number)
str..
out results.txt append
load out_record out_fmt out_eqn {
"% " = Run_Number;
" % " = Files(Run_Number);

The above will output the following into the file RESULTS.TXT.

42 Miscellaneous

Miscellaneous 43

Cycle Iter Rwp second_soll1FCF42E6640_ Err bkg1FCF3E90F18 Err ...
0 7 7.026593e+00 7.437574e+00 3.511447e-02 1.208843e+01 ...
0 filel.xy

Cycle Iter Rwp second_soll1FCF42E6640_ Err bkg1FCF3E90F18 Err ...
0 7 7.026593e+00 7.437574e+00 3.511447e-02 1.208843e+01 ...
1 file2.xy

2.14... Modify_peak now works with no_th_dependence

modify_peak can now be used with no_th_dependence. When no_th_dependence is defined
then Get(current_peak_x) returns the x-axis of the point being calculated; when no_th_de-
pendence not defined then Get(current_peak_x) returns the wavelength of the point being cal-
culated.

2.15... Not saving extrapolated peaks when doing intensity derivatives

str...
[dont_save_extrapolated_pks]

The process of adding peaks to a calculated profile from the peaks buffer can be computation-
ally intensive. This process occurs many times during a refinement iteration when, for exam-
ple, calculating the derivatives of a site fractional atomic coordinate. An in-between step is
therefore performed where interpolated peak datais stored. The memory requirements for the
interpolated data can be large and in cases where memory is an issue then the keyword
dont_save_extrapolated_pks can be used.

2.16... Atomic f0O values from a table

User defined atomic fO values can be read from a file where the format comprises d-spacing
and fO value. A user_y object is used to hold the fO values, the following demonstrates its us-
age:

xdd...
MoKa2(0.001)
user_y !C_fO_table C_fO@_table.xy ' x-axis are the D_spacings
str
load fe_f1_f11_atom fo f1 f11 { C = C_fo_table; 0 0 }
Cubic(8.61)
space_group "201"
site C1 x @y 8 z @ occ C 1 beq 1

2.17 ... Selecting files for display using grep regular expressions

Grep regular expressions can be used to simplify the selection of scans for display; this is use-
ful when there are many patterns loaded. Grep can be accessed through the “Global/Filter
scans for display” option in the TreeView pane as seen in the following:

43 Miscellaneous

Miscellaneous 44

Dﬁ@c@@éfﬂﬂwtﬁlrofﬁﬂﬂfxV.\d“‘«ﬁﬁ*«:&\ﬁfﬂ‘
v —‘Tzzwmmmmg | Enter grep-type reqular expression |RBYTERt S p M é 2y H Vi
12 Time ©.10 FRwp 6.626 -0.984 MC 26.23 2
- :,z::‘gr::::d _[1-9100 13 Time ©.11 FRwp 6.620 -0.906 MC 7.011
— 1y fil N 14 Time ©.11 FRwp 6.619 -0.981 MC 1.90 1
> (18 Corrections - Convelutior Apply filter 10 active window 15 Tine .11 Rwp 6.616 -0.003 MC 3781
L Miscellaneous 16 Time ©.11 Rwp 6.614 -0.002 MC 12.83 2
3 Display 17 Time .11 Rwp 6.613 -0.081 MC 3.85 1 |
(5 Filter scans for display 16 Tine 0.12 R 6.612 -0.001 MC 16.44 2
> T d8 02999raw 1 oo 8116 seconds -
Parameter{s) rl Timit(s)
Paste INP to Node/Selections i 80 -
N Launch Mode: Cwitest examplesiceo2ing
60
"IN
AF 20 S
Nl
0 2 4 5 8 10 12 14 16 18 20 2
950
20
850
800 |
750
700 ‘ | ‘
& | | ,“ | | |
- % ‘ / J WITu‘l | u Lo oy
550 Lo J.w"u..w \-H WL | . Al WmJMTN»quWJw; ‘wd‘-.wm.».«
500
- Wk, fLM.‘meJ I Wl [N— JUM A)u_.._h...o.Nh..JL P LA
I
400 HWI‘ uq_,w Wkﬂ J.JL,A ijdwwwhwuwldbu«w
350 L I |M~ It
200 A st et smerert b 7' »m.ﬂw —— uquwwu Whirerstmrtertiosastimbossessnen
| |
250 oty ,,,,..,,,J va L . | bl I [JL.,..»“U\» A
200 (I \ |
150 B IW“[:“‘ Iw "LJ -w-“"\rvwa l | \«-l\-»u'\ L ‘ -.»-A---d‘ﬂ‘\-n-r '--A.-Jul { “W—MMM
H
100 { Ml LML-M‘ lwwtwy ...,J ! wJ‘wf "Mhm&' ¥ ‘L““’*‘"""A“‘“"‘*"‘TJ [A Mt
50 Iy
) MMWMW %w \«»«J : i -'\«.WWU LWWM‘M MW\WW‘.-J\W
0 2 % 2 0 % u 36 B M 4 4 4 48 50 52 54 2 6 6 6 0 72
x= 4159239 ¥ = 989185 d = 2169579

In the above, every 100" scan is displayed using the regular expression of “_[1-9]00”.
2.18... Applying lp_search to TOF data

lp_search cannot be directly applied to TOF data. However, it is relatively easy to convert the
TOF data to 2Th data where lp_search can be used. The examples TEST_EXAMPLES\TOF\TOF-
TO-Q.INP is an example that converts the data to 2Th and then applies lp_search. The conver-
sion is as follows:

I(Q) = Intensity(TOF) dTOF/dQ
Q=2Pi/d
d=2Pi/Q
TOF=t0+t1d+t2d"2=t0+t12Pi/Q+t2(2Pi)*2 / Q"2
dTOF/dd =t1 +2t2d;
dd/dQ=-2Pi/Q"2;
dTOF/dQ = dTOF/dd dd/dQ
If t0 =12 =0 we get:
dTOF/dQ =-t12Pi/ Q"2 =-t1 D_spacing”*2/ (2 Pi)

Orin INP format we have:

44 Miscellaneous

Miscellaneous 45

xdd TOF-DATA.XY
x_calculation_step = Yobs_dx_at(Xo) .5;prm !'t0 ©
prm !'t1 6171.89377

prm !t2 0
prm !'d = X / t1;
prm !Q = 2 Pi / d;

prm !dtof_dd = t1 + 2 t2 d;
prm !dd_dQ = -2 Pi / Q"2;
prm !dtof_dQ = dtof_dd dd_dQ;
xdd_out TOF-to_Q.xy load out_record out_fmt out_eqn
{
" %11.6f
" %11.6f\n"

2 Pi/ d;
Yobs Abs(dtof_dQ);

2.19... Correction for dispersion using modify_peak_eqn
Example: TEST_EXAMPLES\DISPERSION\DISP.INP

The shape of the emission profile changes with 26 due to dispersion such that:
I(lam) dlam = I(th) dth
or,
I(th) = I(lam) dlam_dth
Differentiating Bragg’s with respect to 6 we have:
dlam_dth =2 d Cos(th)
or,
I(th) = I(lam) 2 d Cos(th)
Rearranging we get:
I(th) = lam I(lam) Cot(th)

The point by point intensity of the emission profile therefore changes as function of Cot(th).
DISP.INP show difference between correcting for and not correcting for dispersion as follows:

45 Miscellaneous

700 4

650 A

600 -

550 1

500 A

150

100 ~

50 1

Miscellaneous 46

175 18 1.85 19 1.95 2 205 2.1 215 22
2Th Degrees

The peak shape of the above is as follows:

46

hat 0.1 num_hats 3 ' specimen/instrument
lam ymin_on_ymax 0.0000001 la 1 lo !lam_0 1.540596 1lh 0.5

modify_peak_eqn =
Get(current_peak)
If (And(Get(current_peak_x)>(lam_0-1.5),Get(current_peak_x)<(lam_6+ 1.5)),
1 / Tan(ArcSin(Get(current_peak_x) / (2 D_spacing))),
0
)

modify_peak_apply_before_convolutions

Miscellaneous

References 47

3. ..REFERENCES

Farrow, C.L; Juhas, P.; Liu, J.W.; Bryndin, D.; Bozin, E.S.; Bloch, J.; Proffen, Th. Billinge, S.J.L.
(2007). J. Phys.: Condens. Matter 19 (2007) 335219 (7pp)

Madelung, Erwin. "Das elektrische Feld in Systemen von regelmaBig angeordneten
Punktladungen." Physikalische Zeitschrift, 19, 524-532 (1918).

Verlet, Loup (1967). "Computer "Experiments" on Classical Fluids. |. Thermodynamical Prop-
erties of Lennard-Jones Molecules". Physical Review. 159 (1): 98-103. Bib-
code:1967PhRv..159...98V. doi:10.1103/PhysRev.159.98

47 References

https://doi.org/10.1103%2FPhysRev.159.98
https://doi.org/10.1103%2FPhysRev.159.98
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://en.wikipedia.org/wiki/Bibcode_(identifier)
https://ui.adsabs.harvard.edu/abs/1967PhRv..159...98V
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1103%2FPhysRev.159.98

	1. New Functionality
	1.1 Running TOPAS in high priority mode
	1.1.1 Running TA.EXE in high priority mode (TOPASH.BAT)
	1.1.2 Running TC.EXE in high priority mode

	1.2 New PDF functionality
	1.2.1 ADPs in PDF refinement
	1.2.2 Multiatom approach to ADPs in PDF refinement
	1.2.2.1 Multiatom approach to ADPs – fitting to G(r) patterns

	1.3 Displaying partial PDFs
	1.4 Setting A-matrix elements that must-be-zero to zero
	1.5 Stretching peaks
	1.6 Reusing objects in large refinements
	1.7 2θ point by point calculation of f0 and beq
	1.8 To_Prm and using an equation to define a parameter name
	1.9 Ingesting files into an INP file using #ingest
	1.10 #external_INP - using external INP format files
	1.11 Defining hkls using use_hklm
	1.12 Defining local parameters using $
	1.13 load_save_locals - automatically saving and loading parameters
	1.14 transform_x without recalculating patterns
	1.15 Tracking atomic movements graphically
	1.16 Energy Minimization
	1.16.1 Reporting on the Madelung constant
	1.16.2 Reporting on the Coulomb potential at a site
	1.16.3 Enhancements to the grs_interaction
	1.16.4 Including lattice parameter in grs_interaction(s)
	1.16.5 Ignoring the Coulomb part of the grs_intercation
	1.16.6 _rem attribute - Removing/inserting parameters from refinement
	1.16.7 Using ok_to_continue and _rem
	1.16.8 Energy minimization-only resulting in the observed structure of AlVO4
	1.16.9 Determining repulsion parameters for AlVO4
	1.16.10 A non-ionic model for AlVO4

	1.17 Molecular dynamics (MD)
	1.17.1 Molecular dynamics in a general manner
	1.17.2 Molecular dynamics for atoms
	1.17.3 Applying a force on atoms

	1.18 Cross correlation function

	2. Miscellaneous
	2.1 User defined phase colour, line width and point size (_clp)
	2.2 Display hkl ticks on Surface plots
	2.3 hkl ticks are now corrected for zero errors
	2.4 Highlighting/displaying phases and hkl tick marks
	2.5 gui_text keyword now ignored by the kernel
	2.6 Outputting special characters
	2.7 Iterating over internal data-tree nodes using ‘for’
	2.8 Command prompt output during INP file loading using print
	2.9 Sorting output by columns using _sort_dec or _sort_inc
	2.10 Creating many xdds at once using new and xdd_file
	2.11 seed, #seed_eqn, seed-tc.txt, seed-tb.txt, Rand
	2.12 Getting the number of items in a #list using #list_n
	2.13 out_prm_vals_on_end
	2.14 Modify_peak now works with no_th_dependence
	2.15 Not saving extrapolated peaks when doing intensity derivatives
	2.16 Atomic f0 values from a table
	2.17 Selecting files for display using grep regular expressions
	2.18 Applying lp_search to TOF data
	2.19 Correction for dispersion using modify_peak_eqn

	3. References

