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2 New kernel functionality 

2.1 Convolution 

2.1.1 ..... ft_conv 

The keyword ft_conv describes a Fourier Transform (FT) that is convoluted into phase peaks using a Fast 

Fourier Transform (FFT); for example, to convolute a Voigt into a phase the following can be used: 

ft_conv = Exp(-(Pi FT_K gfwhm)^2 / (4 Ln(2)) - Pi FT_K lfwhm); 

ft_min = 1e-8; ' this is the default and is optional 

ft_x_axis_range = 40 lfwhm; 

‘ Get(ft_0) 

‘ FT_Break 

The convolution theorem is used here multiplying the FT of a Gaussian by the FT of a Lorentzian. Were the 

Fourier transforms separately defined then the program will internally use the convolution theorem. 

FT_K is a reserved parameter name and it returns the transform k divided by the x-axis range of the peak; 

this range includes ft_x_axis_range. 

ft_x_axis_range can be an equation that needs to be set such that the transform decays to near zero; peak 

tails will otherwise be incorrect. A Lorentzian for example needs a large ft_x_axis_range for accurate x-axis 

tails.  

ft_min defines the smallest value to which the transform is calculated to. For example, an already broadened 

peak in x-axis space will have a relatively narrow transform; the calculation of the transform is therefore 

terminated when FT(k)/FT(k=0)<ft_min. Transform values for larger k are then set to zero. If(,,) constructs 

can instead be used within the transform equation for further control; for example:  

ft_conv = If (FT_K > D, FT_Break, Sphere(FT_K, D)); 

Here the calculation of the FT is terminated when FT_K>D using FT_Break.  

Get(ft_0) returns FT(k=0) and can be used within the ft_conv equation, for example,  

ft_conv = { 

def a = Exp(-Pi FT_K lf); 

return If(a < 1e-6 Get(ft_0), FT_Break, a); 

} 

ft_conv integrates with convolutions that are performed in direct space. It can be used within peak stack 

operations and it can be a function of the reserved parameter names: 

H, K, L, M, Th, Xo, D_spacing, FT_K and spherical_harmonics_hkl 

Multiple ft_conv (s) can be defined at either the xdd or phase level. When defined at the xdd level the 

convolution is applied to all phases of that xdd. 

The test_examples\ft directory comprises examples that use ft_conv. For a typical Rietveld refinement, an 

ft_conv used to describe a Voigt is almost as fast as the analytical equivalent as seen in example 

ft\alvo4a.inp. For high accuracy the range of the peak, as defined with ft_x_axis_range, needs to be large, up 

to 400 FWHM for a Lorentzian; in these cases the ft_conv is considerably slower as seen in ft\voigt.inp. 

ft\alvo4a.inp compares spherical_harmonics_hkl used with and without ft_conv.  

  prm csl 50 min 3 max = Min(Val 2 + .1, 10000);  

  prm csg 50 min 3 max = Min(Val 2 + .1, 10000);  

  prm csl_fwhm = 0.1 Rad Lam / (csl Cos(Th)); 
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  prm csg_fwhm = 0.1 Rad Lam / (csg Cos(Th)); 

  if 1 { 

   ' Spherical Harmonics 

     spherical_harmonics_hkl sh 

    sh_order 2  

    load sh_Cij_prm  

    { 

     y00   !sh_c00  1 

     y20   sh_c20   0     

     y21p  sh_c21p  0     

     y21m  sh_c21m  0     

     y22p  sh_c22p  0     

     y22m  sh_c22m  0     

    }  

     

   existing_prm csl_fwhm *= sh; 

   existing_prm csg_fwhm *= sh; 

  }     

  if 0 { 

   ' use analytical Lorentzian and Gaussian convolution 

 

   lor_fwhm = csl_fwhm; 

   gauss_fwhm = csg_fwhm; 

 

  } else { 

   ' use Fourier Transform convolution 

   ft_conv = Exp(-(Pi FT_K csg_fwhm)^2 / (4 Ln(2)) - Pi FT_K csl_fwhm); 

    ft_x_axis_range = 45 csl_fwhm + 4 csg_fwhm; 

 

  } 

The speed of the analytical convolution is greater not simply because describing the peak analytically is 

faster but because derivatives of multiple parameters for lor_fwhm (or gauss_fwhm) requires only one peak 

calculation; whereas for ft_conv the peak is recalculated for each independent parameter that it is a function 

of.  

2.1.2 ..... ft_conv compared to user_defined_convolution 

If a response function is known in x-axis space then it is often best to perform the convolution in x-axis space 

rather that describing the FT using ft_conv. The keyword user_defined_convolution can be used to perform 

convolution in x-axis space and the speed at which it operates is as fast or faster than ft_conv depending on 

the x-axis range of the response function; this is demonstrated in ft\lorentzian.inp. For each peak 

user_defined_convolution estimates the computational effort required to perform the convolution directly and 

with a FFT and chooses the one with the least computational effort. Examples that use 

user_defined_convolution are as follows: 

ft\lorentzian.inp 

tof\tof_bank2_2.inp 

wppm\gamma.inp 

udefa.inp 

udefa.inp in particular shows how to convolute a function with discontinuities in x-axis space; ie. 

user_defined_convolution = Exp(-20 X^2); min = -.2; max = .5; 

The FT for functions with such discontinuities often cannot be described analytically and hence the 

usefulness of user_defined_convolution. 
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2.1.3 ..... FFT versus direct convolution 

Typically a FFT convolution is quoted as comprising O(N log2N) operations (Cooley–Tukey algorithm for 

example) versus a direct convolution that comprises O(N
2
) operations, see 

https://ccrma.stanford.edu/~jos/ReviewFourier/FFT_Convolution_vs_Direct.html for example, and that direct 

convolution is only faster for N<128. However, in XRD work a direct convolution rather than an FFT working 

on real numbers is often faster for N ~< 256 to 512 as the comparison of the O(N log2N) versus O(N
2
) is 

invalid. To see why consider a response function comprising 3 points and a peak comprising 5 points. A 

convolution can be pictured as the response function R moving along the peak P as follows: 

P    0 0 0 1 1 1 1 1 0 0 0  

R      - - x 

R        - x x  

R          x x x 

R            x x x 

R              x x x 

R                x x - 

R                  x - - 

In this representation each ‘x’ can be considered a multiply and in direct convolution this makes a total of 15 

multiplies (Nr*Np) and not N
2
 where N/2≤(Nr+Np)≤N. To perform such a convolution with an FFT the number 

of operations is approximately 4*16*log216=256 multiplies where 16 is the closest power of 2 to Nr+Np. Of 

course FFT routines typically also have special cases for small N; nonetheless N=256 to 512 is not small and 

many peaks in XRD work typically comprise less points and in particular many of the response functions 

have a small Nr; these include axial divergence, equatorial divergence, receiving slit width, capillary 

convolution, LPSD convolution and often sample penetration. 

2.1.4 ..... Convolutions in general 

TOPAS approximates the number of operations required for direct and FFT convolution and chooses the one 

with the smaller number of operations. In addition all direct convolutions are performed with peaks treated as 

straight line segments. Response functions are either straight line segments, analytical or both. The extra 

cost of the piece wise integration is small, approximately 3 (Nr+Np) operations, and the benefit is a high 

degree of accuracy.  

Apart from lor_fwhm and gauss_fwhm, all of the convolutions described below have discontinuities in 2Th 

space; their associated Fourier transform therefore is difficult to describe. In cases where a FT is less 

demanding then a FFT is used after first calculating the aberration in 2Th space. 

Response functions that are treated as straight line segments are:  

user_defined_convolution 

capillary_diameter_mm 

lpsd_th2_angular_range_degrees 

Response functions that are analytically convoluted with the straight line segments of the peak are: 

exp_conv_const 

hat 

stacked_hats_conv 

Response functions that comprise a mixture of analytical and straight line segments are: 

axial_conv  

one_on_x_conv 

circles_conv 

https://ccrma.stanford.edu/~jos/ReviewFourier/FFT_Convolution_vs_Direct.html
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lor_fwhm and gauss_fwhm convolutions are treated analytically with the emission profile to form the base 

profile. Convolutions are calculated with a step size given by: 

Peak_Calculation_Step = x_calculation_step / convolution_step 

For efficiency x_calculation_step should not be defined for data with equal x-axis steps; instead 

rebin_with_dx_of should be used.  The following response functions are calculated at smaller step sizes 

without changing Peak_Calculation_Step or Nr: 

axial_conv, Step = Peak_Calculation_Step / 2 

lpsd_th2_angular_range_degrees, Step = Peak_Calculation_Step / 3 

capillary_diameter_mm, Step = Peak_Calculation_Step / 1 to 3 

In this manner a high degree of accuracy is maintained for the little extra cost in calculating the extra 

response function points and with the benefit of not increasing Np*Nr. Typically a laboratory diffraction 

pattern can be accurately synthesized with a Peak_Calculation_Step of 0.02 degrees 2Th. The next step to 

increasing accuracy would be to increase convolution_step to 2 and so on. 

When direct convolution is used then most convolutions scale by (Nr * Np) except for convolutions that scale 

by N; these are always performed directly and they are: 

exp_conv_const 

hat 

stacked_hats_conv 

Calculating derivatives of parameters that are a function of a convolution can be demanding. Most 

convolutions however that have multiple dependent parameters require only one recalculation of the 

convolution; exceptions are ft_conv, WPPM_conv and user_defined_convolution. In the case of convolutions 

that comprise multiple convolution parameters, for example, axial_conv with its convolution parameters of 

primary_soller_angle etc..., then a recalculation for each of the convolution parameters is required.  

The following is an overview of the convolution and the aberration that uses it: 

axial_conv    Full Axial divergence model 

one_on_x_conv Equatorial Divergence 

circles_conv  Simple axial model 

capillary_diameter_mm Capillary sample 

lpsd_th2_angular_range_degrees  LPSD detector 

exp_conv_const  Sample penetration with or without a finite thickness 

hat  Receiving slit width, sample tilt 

stacked_hats_conv Tube tails 

2.2 WPPM 

Examples referred to in this section reside in the test_examples\wppm directory. 

2.2.1 ....... WPPM in 2Th space 

The WPPM microstructure analysis (Scardi & Leoni, 2001; Leoni et al. 2004; David et al. 2010) for domains 

comprising spheres and a gamma distribution can be implemented using user_defined_convolution 

operating in 2Th space as shown in gamma.inp. 

2.2.2 ....... WPPM using fit_obj(s) 

For cases where microstructure broadening is far greater than instrument/emission profile broadening then 

fit_obj’s can be used to describe the peak shape (see gamma-fit-obj.inp and sphere-fit-obj.inp), for example: 
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   fn gamma_mu_variance(mu, v, xo) 

      { 

         def s = 2 ( Sin( X Pi/360) - Sin(xo Pi/360) ) / lam; 

         def p0 = Pi s mu; 

         def p = If(Abs(p0) < 1e-10, 1, p0); 

         def q = 2 p / v; 

         return 

            mu v / p^4 

            ( 

               2 p^2 / (2 + v)  

               + (v / (2 + 3 v + v^2)) (1 - (1 + q^2)^(-.5 v) Cos(v ArcTan(q)) 

               - 2 p (1 + q^2)^(-.5 (v+1)) Sin( (1 + v) ArcTan(q))) 

            ); 

      } 

Example super-lorentzian.inp is useful for asking the question; can spheres with a gamma distribution 

describe a 1/(1+x^2)^m type function? 

Example compare-1.inp is useful for asking the question; can a Voigt fit to a particular case of spheres with a 

gamma distribution? 

2.2.3 ....... WPPM using WPPM_ft_conv 

WPPM_ft_conv describes a FT in s space and performs a convolution on phase peaks that have been 

interpolated to s space, for example: 

WPPM_ft_conv = 1 - 1.5 WPPM_L / D + 0.5 (WPPM_L / D)^3; 

WPPM_L_max = D; 

WPPM_th2_range = 25 .1 Rad Lam / (D Cos(Th));  

WPPM_correct_Is 

The result is then interpolated back to 2Th space. Interpolations are scaled such that I(s)ds =I(θ)dθ when  

WPPM_correct_Is is defined; the affects of this scaling is typically small at low angles and becomes 

noticeable at very high angles reaching a maximum at 180 degrees 2Th where the derivative of Cos(Th) is at 

a maximum.  

When multiple WPPM_ft_conv(s) are defined then the program will internally use the convolution theorem.  

WPPL_L is a reserved parameter name that returns the transform parameter. 

WPPM_L_max defines the maximum WPPL_L. 

Get(ft_0) and FT_Break can both be used in WPPM_ft_conv in a manner similar to ft_conv. 

The tails of WPPM peaks extend for almost the whole diffraction pattern; they can be shortened using 

WPPM_th2_range; in the above example this range has been written in terms of the fwhm as defined in the 

Scherrer equation. 

WPPM_ft_conv can be a function of the following reserved parameter names: 

H, K, L, M, Th, Xo, D_spacing, WPPM_L and spherical_harmonics_hkl 

Example s-sphere-1.inp uses WPPM_ft_conv to fit to a synthesized WPPM generated peak with identical 

results. 

The following macros (written by Matteo Lenoi), as defined in TOPAS.INC, describes a log normal 

distribution: 

WPPM_Cube_Ln_Normal 

WPPM_Sphere_Ln_Normal 

WPPM_Octahedron_Ln_Normal 

Where for example WPPM_Octahedron_Ln_Normal is as follows: 

macro WPPM_Octahedron_Ln_Normal(muc, muv, sigc, sigv) 
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   { 

      #m_argu muc 

      #m_argu sigc 

      If_Prm_Eqn_Rpt(muc, muv, min .1 max = Min(2 Val + .3, 100);) 

      If_Prm_Eqn_Rpt(sigc, sigv, min .01 max = Min(2 Val + .01, 3);) 

      WPPM_ft_conv = 

         { 

            def cga = Constant(Cos(Get(ga) Pi/180)); 

            def sga = Constant(Sin(Get(ga) Pi/180)); 

            def cal = Constant(Cos(Get(al) Pi/180)); 

            def cbe = Constant(Cos(Get(be) Pi/180)); 

            def aa = Constant(Get(a)); 

            def bb = Constant(Get(b)); 

            def cc = Constant(Get(c)); 

            def cv = Constant(Get(cell_volume)); 

             

            def wA = H / aa; 

            def wB = (-H cga / aa + K / bb) / sga; 

            def wC = ( (H bb cc (cal cga - cbe) + K aa cc (cbe cga - cal)) / 

sga + L aa bb sga) / cv; 

                      

            def A = D_spacing Max(wA, wB, wC); 

            def B = D_spacing Max(Min(wA, wB), Min(wA, wC), Min(wB, wC)); 

            def C = D_spacing Min(wA, wB, wC); 

             

            def H0 = 1; 

            def H1 = If (A>=B+C,-3 A/Sqrt(2),- 3 (A + B + C)/Sqrt(8)); 

            def H2 = If (A>=B+C, 3 (A A - B B - C C)/2,-3(A A+(B-C)^2 - 2 A 

(B+C))/4); 

            def H3 = If (A>=B+C, (-A^3 + 3 A (B B+C C) + 2(B^3 + C^3))/(2 

Sqrt(2)),(A^3 + B^3 + C^3-3 A B C)/Sqrt(2)); 

            def Kc = (A + B + C)/Sqrt(2); 

            def u = CeV(muc, muv); 

            def sig = CeV(sigc, sigv); 

             

            fn M(n) = Exp(Min(n u + 0.5 n^2 sig, 600));  

            fn wppm_Ln(kc) = Get(WPPM_Ln_k) + Ln(kc Get(WPPM_dL)); 

            fn q(Hn, n) {  

               return  

                  Hn  

                  Erfc_Approx( ( wppm_Ln(Kc) - u - (3-n) sig^2) / (sig 

Sqrt(2))) 

                  WPPM_L^n  

                  M(3-n); 

               } 

            return q(H0, 0) + q(H1, 1) + q(H2, 2) + q(H3, 3); 

         }                     

         WPPM_break_on_small = 1e-7;  

         WPPM_L_max 1000 

         WPPM_th2_range = 30; 

   } 

Example cube-ln-normal-1.inp can be used to test these macros. Lattice parameters appearing within the 

macros are made constant using Constant; thus these convolutions are made independent of lattice 

parameter changes and hence a separate convolution is not initiated whilst calculating lattice parameter 

derivatives.  

WPPM_Ln_k  is a reserved parameter name that returns Ln of an integer and is used to calculate Ln(Kc 

WPPM_L) in a fast manner.  

The example ln-normal-1.inp can be used for visualizing a Ln normal distribution. It uses the 

Ln_Normal_x_at_CD function to determine the limit of the distribution. 
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2.3 Loading of INP files 

2.3.1 ..... if {} else if {} else {} 

An ‘if’ construct operational on the loading of INP files, see test_examples\zro2.inp. Loading operates on the 

pre-processed INP file; syntax is as follows: 

if expression { 

} else if expression { 

} else expression { 

} 

expression can be any valid TOPAS equation without the semicolon;  in addition expression can contain the 

functions Prm_There(prm_name) and Obj_There(obj_name). The following is equivalent to a /* */ block 

comment: 

if 0 { 

 ... 

} 

A more complex construct could look something like the following: 

xdd  

 local aaa 1 

 str... 

  local aaa 2 

 str... 

  local aaa 3 

 hkl_Is     

  if Prm_There(aaa) { 

   Out(aaa, "\nThis is the aaa at the xdd level %-1.6f") 

   if aaa == 2 { 

Out_String("\nThis wont be written to file as aaa at the xdd 

level is 1") 

   } 

  } else if Obj_There(hkl_Is) { 

   Out_String("\nYes this is a hkl_Is phase") 

  } else { 

   Out_String("\naaa is not there and this is not a hkl_Is phase") 

  } 

for xdds { 

if And(Obj_There(neutron), Obj_There(pk_xo)) {  

' Neutron TOF 

} 

} 

2.3.2 ..... existing_prm 

existing_prm allows for the modification of an existing prm/local parameter, see for example the macro 

K_Factor_WP in TOPAS.INC. The following: 

local a 1 

existing_prm a += 1; 

existing_prm a /= 2; 

existing_prm a = 3 (a + 1); 

prm = a; : 0 

will give the result: 

prm = a; : 6.00000 

The operators of +=, -=, *-, /= and ^= are allowed. 
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2.4 CIF 

The following macros and Get’s can be used to output data in CIF format; Red corresponds to new macros:  

Out_CIF_STR(file) 

Out_CIF_ADPs(file) 

Out_CIF_STR(file, with_id) 

Out_CIF_Bonds_Angles(file) 

Get(number_of_parameters) 

Get(refine_ls_shift_on_su_max) 

Get(weighting) 

Xi = a reserved parameter name 

_refine_ls_shift/su_max can be accessed using Get(refine_ls_shift_on_su_max) when do_errors is defined 

and when continue_after_convergence is NOT defined. A message similar to the following is displayed on 

calculation:  

refine_ls_shift_on_su_max 0.409610469 corresponds to parameter m501b939c_3 of 

object prm_10 

Get(weighting) and Xi can be used as follows: 

 xdd_out file append load out_record out_fmt out_eqn 

  { 

    " %9.0f" = Xi; 

    " %11.5f" = X; 

    " %11.5f" = Ycalc; 

    " %11.5f" = Yobs; 

    " %11.5f\n" = Get(weighting); 

  } 

Get(weighting) returns the following masked with excluded regions: 

1 / Max(1, Yobs),  if SigmaYobs does not exist 

1 / SigmaYobs^2,  if SigmaYobs does exist 

If weighting is a function of YCalc etc... then it returns the last weighting calculated depending on 

recal_weighting_on_iter. 

2.5 Rigid bodies 

2.5.1 ..... Rigid body parameter errors propagated to fractional coordinates 

Errors for fractional coordinates for sites defined as part of a rigid body are now propagated to the site 

fractional coordinates. The example rigid-errors\Aniline_I_100K_x.inp (by Simon Parsons) demonstrates 

equivalent refinements for the case of 1) using a rigid body and for the case 2) hand coding the fractional 

coordinates in terms of rigid body parameters but not in fact using a rigid body. Errors and convergence 

behaviour in both cases are identical. In particular case (2), which has many computer algebra equations, 

takes approximately the same time per iteration as case (1); this demonstrates that the computer algebra 

does not noticeably affect computational speed even in cases where its use is plentiful. 

2.5.2 ..... Z-matrix collinear error information 

The Z-matrix collinear points exception can be deciphered using information displayed on detection of the 

error. The collinear error is due to three atoms on a z-matrix line which are collinear. The information 

displayed includes a snap shot of the rigid body operations pertaining to the error. The following is an 

example of the information displayed: 

 

DB_x_CB Zero dot product - Z-matrix possible collinear points at atoms 



11 
 

        O10 

        C16 8.91631604e-016 1.0912987e-014 5.2 

        C15 3.72315026e-016 1.0912987e-014 3.9 

        C11 0 0 0 

 

Partial z-matrix in error: 

 

rigid 

       z_matrix C11 

       z_matrix C12 C11 1.3 

       z_matrix C13 C12 1.3 C11 120 

       z_matrix C14 C13 1.3 C12 120 C11 180 

       z_matrix C15 C14 1.3 C13 120 C11 0 

       z_matrix C16 C15 1.3 C14 120 C11 180 

       z_matrix O10 C16 1 C15 108 C11 120 

To investigate why the error is occurring the rigid body fragment can be copied to a Rigid-body editor 

window; ie. 

 

 

 

The O10 line is commented out as it’s the line in error. Looking at the O10 line (using the OpenGL window) it 

can be seen that atoms C16, C15, C11 lie on a straight line; this is invalid as it becomes impossible to form 

the dihedral angle in a non-degenerate manner. The best way to think about a z-matrix line with 4 atoms A, 

B, C, D,  ie. 

z_matrix A B # C # D # 

is to think of two triangles ABC and DBC hinged along the line BC. The angle between the triangles is the 

dihedral angle. If B, C, D are collinear then there’s no triangle DBC and hence the dihedral angle cannot be 

formed. Thus for z-matrices both A,B,C and B,C,D must not be collinear. Dummy atoms can solve this 

problem. The program tests for a zero dot product numerically with a tolerance of 1.0e-15. 

2.6 Functions – fn, def, return, noinline 

Functions can be defined using the ‘fn’ keyword; here’s an example of a recursive function: 

fn factorial(x) { return If(x == 1, 1, x factorial(x-1)); } 

prm = factorial(5); : 120 

There’s also the simple form where the ‘return’ statement is implied: 
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fn factorial(x) = If(x == 1, 1, x factorial(x-1)); 

The equation part of ‘prm’ objects can have a function body (see the macro Robust_Refinement in 

TOPAS.INC), for example 

prm = { def a = 2; return a; } 

Most importantly functions can reference parameters defined with the ‘prm’ keyword; this simplifies the 

writing of ‘prm’ equations and additionally memory usage can be greatly reduced when the ‘noinline’ keyword 

is used. Equations called ‘def’ objects can be used and defined within non-simple functions. Here’s an 

example: 

fn gauss(a, x, f, g)  

 { 

  def a1 = 2 Sqrt(Ln(2) / Pi) / f; 

  def a2 = 4 Ln(2); 

  def a3 = (x / f); 

  return a1 Exp(-a2 a3^2); 

 } 

A ‘def’ object must be defined prior to its use. They can be assigned to other ‘def’ objects but not to objects 

of ‘prm’ type. In other words ‘prm’ objects are write-protected within functions. The arguments to functions 

can be ‘def’ or ‘prm’ objects. c-style braces can be used to scope variables; the following will throw an 

exception due to the attempted use of an uninitialized ‘def’ object: 

fn foo(x) { def a; { def a = x; } return a; } 

prm = foo(3); : 0 ‘ Exception thrown  

The following will not throw an exception as the simplification routines will recognize the ‘0’:  

fn a(x) = x undefined_name 0; prm = a(3); : 0 

Functions can be nested; for example: 

fn foo() {  

 def a, b; 

 a = 3; b = 2; 

 fn nested(x, y) { return Sqrt(x^2 + y^2); } 

 return nested(a, b); 

} 

prm = foo(); : 6 

‘def’ and ‘prm’ objects have scope and their scope determine the actual object used. 

Here def ‘a’ is returned:  

fn a(a) { def a = 2; return a; } prm = a(1) : 2 

Here prm ‘a’ is returned: 

prm a = 2; fn a() = a; prm = a(); : 2 

Here the argument ‘a’ is returned: 

prm a = 2; fn a(a) = a; prm = a(3); : 3 

Function specifics 

- fn's are a kernel operation and not a pre-processor operation. 

- fn's must be defined prior to their use. 

- fn arguments are optional but parentheses must be used in both the function definition and its use. 

- a fn cannot be defined with a name of a previously defined fn name. 
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- fn's are inlined by default. 

- Non-nested fn’s can be prevented from being inlined with the ‘noinline’ prefix. 

- nested functions cannot be prefixed with ‘noinline’ 

Use of noinline can often be slower than not using noinline as a stack mechanism is used for the fn 

arguments as well as the global simplification routines cannot simplify what’s inside a noinlined function. 

Functions are therefore ‘inlined’ (the word ‘expand’ is sometimes used) by default.  A macro can be 

considered an inlined function and there’s no difference in the how the following is finally processed: 

fn my_max(a, b, c) = Max(a, b, c); 

macro & my_max(& a, & b, & c) { Max(a, b, c) } 

The macro by definition is inlined in the pre-processed INP file. In the case of ‘fn’ the program will inline 

‘my_max’.  Prefixing fn with ‘noinline’ prevents inlining, for example: 

noinline fn gauss(x, f) = (2 Sqrt(Ln(2)/Pi)/f) Exp(-4 Ln(2)((X - x)/f)^2); 

Its best to inline small functions as it gives the simplification routines a chance to simplify what’s inside the 

function in regards to its surroundings. Consider the following: 

noinline fn a(b, c) = b^2 + c^2; 

prm  p1 1 

prm !p2 1 

prm  p3 1 

prm !p4 1 

prm  p5 = a(p1, p2) + a(p3, p4); : 0 

Without inlining the simplification routines won’t see that p2 and p4 are constants inside the ‘a’ function and 

hence no simplification is performed; the ‘a’ function will be called twice and the stack used twice. Note, 

stack here refers to the computer algebra stack. With inlining p5 after simplification reduces to: 

prm p5 = p1^2 + p3^2 + 2; : 0 

In the case of large functions then not inlining may increase performance as the signalling of equation nodes 

for recalculation will be reduced. Inlined functions have scope allowing the use of the Get() function, for 

example: 

fn lat(h, k, l) = h Get(a) + k Get(b) + l  Get(c);  

str.. 

lor_fwhm = lat(H, K, L) - lat(-H, -K, -L); 

2.6.1 ..... Subject independent single crystal refinement 

The \functions\alvo4-fn.inp example performs a single crystal refinement using the computer algebra aspects 

of the program. No x-ray or subject dependent keywords have been used; instead only six keywords are 

utilized: 

fn, noinline, def, return, prm, restraint 

The speed of alvo4-fn.inp is 7.4 times slower than the comparable subject dependent keyword equivalent of 

alvo4-normal.inp. Much of the difference in speed is in the calculation of the Cosines necessary for the 

structure factors. Importantly convergence and the behaviour of the parameters are similar. The placement 

of noinline is important. Also used is the out_refinement_stats keyword which outputs the following: 

First pass equation statistics excluding attribute equations 

   Number of equations         : 534 

   Number of nodes             : 99751 

   Number of nodes if expanded : 12070283 

 



14 
 

Number of penalties/restraints: 532 

Number of independent penalty/restraints parameters: 58 

Number of penalties/restraints: 532 

Number of independent penalty/restraints parameters: 58 

 

Time   0.13 

Second pass equation statistics excluding attribute equations 

   Before/After equation simplification 

     Number of equations         : 549  553 

     Number of nodes             : 99766  8354 

     Number of nodes if expanded : 12070298  228183 

 

Number of objects taking part in refinement: 73 

Number of dependent parameters with derivatives wrt to Ycalc: 15 

The alvo4-fn.inp demonstrates the ease at which an entire single crystal refinement can be performed; it 

should allow for user defined temperature factors etc…  

2.6.2 ..... Computer algebra and out_refinement_stats 

The computer algebra system CAS in version 5 (Coelho et al., 2011) is around 2 to 4 times faster than 

version 4; compare with running ROSENBROCK-10.INP or PVS.INP. The CAS has been reworked and it 

now operates on a global level where equations are simplified across all objects. The out_refinement_stats 

keywords, for SERINE_I_EVANS_N_TA_BANG_ROT.INP for example, outputs the following equation 

statistics: 

Second pass equation statistics excluding attribute equations 

   Before/After equation simplification 

     Number of equations         : 2707  3085 

     Number of nodes             : 22941  16671 

     Number of nodes if expanded : 1706390373  1070170132 

 

Number of objects taking part in refinement: 2595 

Number of dependent parameters with derivatives wrt to Ycalc: 2319 

2.7 The Minimization Routines 

The Newton-Raphson non-linear least squares method is used by default with the Marquardt method (1963) 

included for stability. A Bound Constrained Conjugate Gradient (BCCG) method (Coelho, 2005) incorporating 

min/max limits is used for solving the normal equations. The objective function 2  is written as: 
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Yo,m and Yc,m are the observed and calculated data respectively at data point m, M the number of data points, 

wm the weighting given to data point m which for counting statistics is given by wm=1/(Yo,m)
2 where (Yo,m) is 

the error in Yo,m, Pp are penalty functions, defined using the keyword penalty, and Np the number of penalty 



15 
 

functions. Rr are restraints, defined using the keyword restraint, and Nr the number of restraints.  KP and KR 

are weights applied to the penalty functions and restraints respectively. K1 corresponds to the user defined 

penalties_weighting_K1 (default value of 1), typical values range from 0.1 to 2. Penalty functions and 

Restraints are minimized when there are no observed data Yo; see example ONLYPENA.INP. 

The normal equations are generated by the usual expansion of Yc,m to a first order Taylor series around the 

parameter vector p. The size of p corresponds to the number of independent parameters N. The penalty 

functions are expanded to a second order Taylor series around the parameter vector p. The restraints are 

expanded to a first order Taylor series around the parameter vector p. The resulting normal equations are: 

A p = Y (2-4) 

where A = A0 + AP + AR 

Y = Y0 + YP + YR 
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(2-5) 

The Taylor coefficients p correspond to changes in the parameters p. Eq. (2-4) represents a linear set of 

equations in p that are solved for each iteration of refinement. Off diagonal terms in AP are not calculated 

and are instead set to zero.  

KR and KP are both set to 1 in the absence of
2

0 . When 
2

0  does exist then KP is used to give approximate 

equal weights to the sum of the inverse error terms in the parameters 0(pi)
2
 and P(pi)

2
 calculated from 

2

0  

and 
2

P  respectively. Neglecting the off diagonal terms results in P(pi)
2
=1/A0,ii and P(pi)

2
=1/AP,ii; however to 

avoid numerical stabilities KP is written as shown in Eq. (2-6).  
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k corresponds to independent parameters that are a function of 
2

P . Similarly for KR we have: 
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KR and KP can be modified using pen_weight and the macro Pen_Wt. Pen_Wt calls the macro Write_Pen_Wt 

which then has to be defined by the user. A definition that mimics the default is as follows: 

macro Write_Pen_Wt(Aii, Ai, Pii, Pi) 

{ 

pen_weight = If(Pii<1e-14 Aii, 0, 1.05 Aii/(Pii + Aii Min(Pi/Ai, 0.05))); 

} 

Aii and Ai corresponds to A0,ii and Y0,i respectively. For KP then Pii and Pi corresponds to AP,ii and YP,i. For KR 

then Pii and Pi corresponds to AR,ii and YP,i. 

To formulate ShelX type restraints the following could be used: 

pen_weight = 1; 

penalties_weighting_K1 = (Get(r_wp)/Get(r_exp))^2;  

do_errors_include_restraints 

save_best_chi2 

restraint = Sqrt(w) (yt-y); 

where Sqrt(w) is simply the square root of the restraint weight used by ShelX.  

2.7.1 ..... Improvements to Conjugate Gradient Solution method 

The bound constrained conjugate gradient method (Coelho, 2005) used for solving the normal equations 

greatly assists in convergence of the non-linear least squares process. Previously min/max limits were 

calculated prior to the solution of the normal equations and then held constant during the solution process. 

Version 5 in addition dynamically recalculates min/max limits during the solution process for min/max limits 

that are a function of independent parameters. For example, to constrain site occupancies on three sites to 

full occupancy with three atomic species each with occupancy of 1 the following could be defined: 

         site Ni  x .11 y .22 z .33  

            occ Ni ni1  0.20000 min 0 max  1 

            occ Zr zr1  0.30000 min 0 max = 1 - ni1; 

            occ Ca ca1 = 1 - ni1 - zr1; :  0.50000 

     

         site Zr  x .21 y .32 z .43  

            occ Ni ni2  0.40000 min 0 max = 1 - ni1; 

            occ Zr zr2  0.50000 min 0 max = 1 - ni2; 

            occ Ca ca2 = 1 - ni2 - zr2; :  0.10000 

     

         site Ca  x .31 y .42 z .53  

            occ Ni ni3 = 1 - ni1 - ni2; :  0.40000 

            occ Zr zr3 = 1 - zr1 - zr2; :  0.20000 

            occ Ca ca3 = 1 - ca1 - ca2; :  0.40000 

 

         ' Occupancy on sites add up to 1    

         prm = ni1 + zr1 + ca1; :  1.00000     

         prm = ni2 + zr2 + ca2; :  1.00000     

         prm = ni3 + zr3 + ca3; :  1.00000     

          

         ' Individual species add up to 1    

         prm = ni1 + ni2 + ni3; :  1.00000 

         prm = zr1 + zr2 + zr3; :  1.00000 

         prm = ca1 + ca2 + ca3; :  1.00000 

Version 4 allowed for such constraints but had difficulty in finding a minima without violating the limits. 

Version 5 has no such difficulty as seen in test_examples\occ-constrain.inp. 

2.7.2 ..... Restraints and Penalties 

A particular restraint can be reformulated into a penalty by squaring the restraint, for example: 

restraint = a (x - b); 
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is equivalent to  

penalty = a^2 (x - b)^2; 

In the case of the restraint the off-diagonal terms AR,ij are calculated when approximate_A (the BFGS 

method) is not defined. In the case of the penalty the off-diagonal terms AP,ij is set to zero. Restraints often 

converge faster than equivalent penalties due to the use of the off-diagonal terms (compare ROSENBROCK-

10.INP with ROSENBROCK-10-RESTRAINT.INP). Penalties are useful for functions that are not to be 

squared; these include negative functions such as the GRS series atomic interaction (see ALVO4-GRS-

AUTO.INP). 

For efficiency the AR matrix is treated as a sparse matrix which is combined with A0 (if it exists) where A0 

could be either sparse or dense. When approximate_A is used then the diagonal elements of A0, AP, and AR 

are not calculated; instead they are approximated by the BFGS method. 

When approximate_A is used and both penalties and restraints are defined then this effectively means that 

the restraints are treated as penalties. The following for example: 

Case 1 

approximate_A 

prm p1 1 prm r1 1 

penalty !P1 = 5^2 (p1 - 7)^2; 

penalty !P2 = 6^2 (p1 - 8)^2; 

restraint !R1 = 7 (r1 - 9); 

restraint !R2 = 8 (r1 - 10); 

will have similar but not identical convergence to the following:   

Case 2 

prm p1 1 prm r1 1 

penalty !P1 = 5^2 (p1 - 7)^2; 

penalty !P2 = 6^2 (p1 - 8)^2; 

penalty !P3 = 7^2 (r1 - 9)^2; 

penalty !P4 = 8^2 (r1 - 10)^2; 

In Case 1 the diagonal elements of the A matrices are: 

AP,p1p1 = (½)  2
(P1+P2) /  p1

2 

AR,r1r1 = (  R1/  r1)
2
 + (  R2/  r1)

2
 

In Case 2 they are: 

AP,p1p1 = (½)  2
(P1+P2) /  p1

2 

AP,r1r1 = (½)  2
(R1

2
+R2

2
) /  r1

2 

The difference in behavior between penalties and restraints can be seen by comparing ROSENBROCK-

10.INP to ROSENBROCK-10-RESTRAINT.INP. In 500,000 iterations we have:  

ROSENBROCK-10.INP:  71 iterations on average to convergence 

ROSENBROCK-10-RESTRAINT.INP: 47 iterations on average to convergence 

The restraints converge faster as the AR,ij elements are calculated. Approximating AR,ij by defining 

approximate_A in ROSENBROCK-10-RESTRAINT.INP gives the fastest convergence time wise: 

ROSENBROCK-10-RESTRAINT.INP: 71 iterations on average to convergence 

Many penalties however cannot be formulated as a restraint, RASTRIGIN.INP for example, and in these 

cases penalties are mandatory. 
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2.7.3 ..... Saved refined values and save_best_chi2 

Values saved on termination of refinement are determined as follows: 

- If continue_after_convergence is NOT defined and save_best_chi2 is NOT defined then values 

saved corresponds to those of the last iteration. 

- If continue_after_convergence is NOT defined and save_best_chi2 is defined then values saved 

corresponds to those that gave the best Chi
2
. 

- If continue_after_convergence is defined and save_best_chi2 is NOT defined then values saved 

corresponds to those that gave the best Rwp. 

- If continue_after_convergence is defined and save_best_chi2 is defined then values saved 

corresponds to those that gave the best Chi
2
 

When there are no penalties or restraints then the best Chi
2
 corresponds to the best Rwp.  

2.7.4 ..... Error calculation 

Errors are calculated for all independent and non-independent parameters that are single valued 

when any of the following is defined: 

do_errors: Errors calculated without the inclusion of penalties and restraints in the A matrix. 

do_errors_include_penalties: Errors calculated with the inclusion of penalties in the A matrix. 

do_errors_include_restraints: Errors calculated with the inclusion of restraints in the A matrix. 

2.7.5 ..... Simulated annealing adaptive step size 

The adaptive step size used in simulated annealing has been improved. In many case the complex 

temperature regime found in the macro Auto_T can be replaced with a single temperature. The example 

CIME-Z-AUTO.INP demonstrates the improvements by using a very incorrect starting temperature of 0.1; the 

program quickly modifies the temperature to a more appropriate vale. Output lines such as: 

Breaking - randomize on errors revisit 

indicate that a particular parameter configuration has been revisited and the temperature will be internally 

adjusted. Note, with randomize_on_errors, relative temperature values are pertinent and not absolute values.  

2.7.6 ..... Refining on an arbitrary Chi2 

The chi2 keyword allows for minimization of a user defined 2 . It can be a function of the reserved 

parameter names X, Yobs, Ycalc and SigmaYobs. In addition the keyword xdd_sum is a parameter that can 

be a function of these reserved parameter names. To, for example, define a normal least squares refinement 

the following can be used: 

xdd... 

xdd_sum denominator = Yobs; 

xdd_sum numerator = (Yobs - Ycalc)^2 / Max(Yobs,1); 

chi2 = 100 Sqrt(numerator / denominator); 

In refining on an arbitrary chi2 the first and second derivatives of chi2 with respect to each independent 

parameter is required. To do this fast Ycalc within chi2 is approximated with a first order Taylor 

approximation around the parameter vector p. This approximation for various formulations of chi2 has 

yielded good convergence even for non-linear parameters. To summarize: 
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- chi2 is treated as a penalty 

- For each independent parameter, a definite minima in chi2 is bracketed and inverse parabolic 

interpolation used to determine the minima of chi2 with respect to that parameter. In the calculation of 

chi2, Ycalc is replaced with its first order Taylor approximation and thus the full Ycalc is only calculated 

once per refinement iteration and not 100s of times.  

- Finding the minima and the curvature of chi2 with respect to each parameter yields 1
st
 and 2

nd
 order 

derivatives of chi2 with respect to each parameter. 

- The BFGS method (approximate_A) is then used to solve the resulting linear equations with off diagonal 

terms approximated according to the BFGS method. 

- The BCCG method incorporating the Marquardt method with automatic Marquardt constant 

determination is used to solve the matrix equations. 

The Rietveld refinement test_example\chi2-ceo2.inp example demonstrates various scenarios. 

Case 1) Here’s output when NOT using chi2.  

  0  Time   0.05  Rwp   26.630    0.000 MC   0.00 0 

  1  Time   0.06  Rwp   16.651   -9.979 MC   0.06 1 

  2  Time   0.06  Rwp    7.510   -9.141 MC   0.02 1 

  3  Time   0.08  Rwp    6.955   -0.556 MC   0.01 1 

  4  Time   0.08  Rwp    6.943   -0.011 MC   0.00 1 

  5  Time   0.08  Rwp    6.923   -0.020 MC   0.00 1 

  6  Time   0.09  Rwp    6.923   -0.000 MC   0.18 1 

--- 0.094 seconds --- 

Case 2) Here’s output when NOT using chi2 but using approximate_A. 

  0  Time   0.05  Rwp   26.630    0.000 MC   0.00 0 

  1  Time   0.06  Rwp   16.883   -9.747 MC   0.00 0 

  ... 

 16  Time   0.13  Rwp    6.950   -0.002 MC   0.04 1 

 17  Time   0.14  Rwp    6.949   -0.002 MC   0.09 1 

 18  Time   0.14  Rwp    6.949   -0.000 MC   0.29 1 

--- 0.14 seconds --- 

Case 3) Here’s output using chi2 defined for normal least squares 

  0  Time   0.03  Rwp   26.630    0.000 MC   0.00 0 P      26.63020 

  1  Time   0.06  Rwp   15.897  -10.733 MC   0.00 0 P      15.89696 

... 

 13  Time   0.33  Rwp    6.974   -0.021 MC   0.00 1 P       6.97366 

 14  Time   0.34  Rwp    6.958   -0.016 MC   0.00 1 P       6.95755 

 15  Time   0.38  Rwp    6.951   -0.006 MC   0.00 1 P       6.95122 

The chi2 case (3) looks similar to case (2); however the path towards the minima is different as the chi2 

procedure is very different to normal least squares refinement. 

2.7.7 ..... Informing of unrefined parameters 

Parameters that do not take part in a refinement are now reported, for example, the following: 

prm a 1 

prm b 1 

where a and b are not used in any equations that are part of refinement will result in the following output: 

Number of independent parameters not taking part in refinement: 2 

   prm_10:  a 

   prm_10:  b 
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The val_on_continue attribute of unrefined parameters are executed at the end of convergence. It can be 

useful, for example, 

prm a 1 val_on_continue = b = 2; ‘ this sets the parameter b to 2. 

2.8 Stacking faults 

[site $name]... 

[layer $layer_name] 

[stack $layer_name]... 

[sx E] [sy E] [sz E] 

[generate_these $sites] 

[generate_name_append $append_to_site_name] 

The super cell approach to stacking faults has been implemented. layer identifies a site as belonging to a 

layer called $layer_name. stack applies a stacking vector (sx, sy, sz) to the named layer. Structures factors 

are generated in the usual manner; a shift corresponding to the stacking vector is then applied. stack 

operates in any space group. Sites that do not belong to a layer are treated as un-stacked and their structure 

factors are generated in the usual manner. 

generate_these generates the sites found in $sites for the stack with coordinates that reflect original $sites 

positions plus the stacking vector. generate_name_append appends $append_to_site_name to the 

generated site. The generated sites have occupancies set to zero which signals a dummy site. Dummy sites 

do not take part in structure factor calculations and hence speed is not hindered. The dummy sites allow for 

graphical display of the layers; ie.  

 

Importantly penalties operate on dummy sites which allow restraints such as Distance_Restrain. For 

example, 

 

space_group P1 

site O1... layer A 

site O2... layer A 

stack A 

sx... 

generate_these O1 

generate_name_append _1 

append_fractional 

in_str_format 
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will output for append_fractional the following: 

site O1 ... 

site O2... 

site O1_1 ... occ O 0 

The test_examples\stacking-faults\kaolinite.inp shows how to simplify the setting up of layers with the use of 

simple macros. Speed of calculation for structure factors are very fast and the derivatives of the stacking 

vectors { sx,sy, sz } are very fast. The main bottle neck in speed is summing the peaks to Ycalc. The switch 

“#define Speed” in kaolinite.inp shows keywords that can speed things up in the early stages of determining 

the stacking vectors. 

2.8.1 ..... Fitting to a Debye-formulae generated pattern using ‘stack’ 

A test pattern was generated using the Debye scattering equation. The structure comprised a single 

atom in an Orthorhombic unit cell with 40 layers (40x40x40 unit cells) in the a-b plane shifted 

according to {Round(Rand(0,2))/3, Round(Rand(0,2))/3, 0}. The blue line in the following is the 

generated pattern comprising the average of 30 runs of the Debye scattering equation. The red line 

corresponds to a Rietveld fit of 6 super cell structures (1x1x40) showing that the super cell 

approach is a good approximation to the Debye formulae for this example. 
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The example stacking-faults\debye-new.inp corresponds to the Rietveld fit using the layer and stack 

keywords. The debye-old.inp file corresponds to the same Rietveld fit but without the layer and stack 

keywords; instead layers are explicitly defined using site in an enlarged unit cell.  

There are two time consuming bottle necks dealt with: 

1) Summing peaks to Ycalc 

2) Calculating structure factors for the stacked layers 

The new phase dependent keyword called [del_approx #] groups peaks from the peaks buffer whilst 

summing peaks to Ycalc; the peaks are grouped such that their 2Th positions all lie within: 

–del_approx  Peak_Calculation_Step <  2Th <  del_approx Peak_Calculation_Step 
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Once the group is found then only the two peaks with the smallest and largest 2Th is kept. The in-between 

peaks have their intensities appropriated to the kept peaks.  A particular I(2Th) intensity has its intensity 

distributed to the two end peaks as follows: 

I(2Th1) = I(2T) f 

I(2Th 2) = I(2T) (1 – f) 

where, 

f = (Cos(π(2Th –  2 Th1) / (2 Th2 – 2 Th1)) + 1) / 2 

The peak buffer stretching routines have also been optimized for both accuracy and speed. The following 

points should be noted when working with large super cells 

- The layer and stack keywords increase computational speed and reduce memory usage 

- del_approx increase computation speed at a relatively small cost to accuracy; a value between 1 

and 3, dependent on Peak_Calculation_Step, is typically acceptable. 

- The graphical display of 10s of 1000s of hkl ticks (there’s 51584 hkls in each phase of the debye-

new.inp) is time consuming; turning the graphical hkl ticks option Off is worthwhile. 

2.8.2 ..... Fitting to Kaolinite data 

stacking-faults\kaolinite.inp demonstrates the application of stack and layer with the following fit: 
 

140135130125120115110105100959085807570656055504540353025201510

S
q
rt

(C
o
u
n
ts

)

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

 

In this example the stacking vectors are refined in a simulated annealing process.  

2.9 Laue refinement 

Single crystal Laue diffraction data can be refined; data files have the extension *.hkl-lam; see directory 

test_examples\laue. Laue_Lam is a reserved parameter name that can be used in hkl type equations; it 

returns the reflection dependent wavelength. The merging of equivalent reflections and Friedel_pairs are not 

allowed with Laue refinement; the following keywords are internally defined with Laue refinement: 

 dont_merge_equivalent_reflections 

dont_merge_Friedel_pairs 

and the following messages reported: 

Equivalent reflections not merged 

Friedel pairs not merged 
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2.10 Quantitative Analysis 

The following are items associated with quantitative analysis with new items in red: 

 xdd.. 

  mixture_MAC 

  mixture_density_g_on_cm3 

  weight_percent_amorphous 

  elemental_composition 

  element_weight_percent... 

element_weight_percent_known... 

  prm = Get(sum_smvs)... 

  Mixture_LAC_1_on_cm(0) ' macro 

  str... 

   weight_percent 

   cell_mass 

   cell_volume 

   phase_MAC 

   spiked_phase_measured_weight_percent 

   corrected_weight_percent 

   prm = Get(sum_smvs)... 

   prm = Get(smv)... 

   prm = Get(sum_smvs_minus_this)... 

prm = Get_Element_Weight(atom)... 

   Phase_LAC_1_on_cm(0) ' macro 

   Phase_Density_g_on_cm3(0) ' macro 

Test_examples\quant\quant-1.inp uses many of these and additionally writes equivalent terms in the form of 

equations, for example: 

  ' This is weight_percent 

  prm = 100 Get(smv) / Get(sum_smvs); :  0 

   

prm q = spiked_phase_measured_weight_percent / 

spiked_phase_measured_weight_percent_wt; : 0 

   

  ' This is corrected_weight_percent 

  prm = q Get(weight_percent); : 0 

   

  ' This is weight_percent_amorphous 

  prm = 100 (1 - q); : 0  

2.10.1 ... Elemental weight percent constraint 

The QUANT implementation is almost entirely written internally using the TOPAS Symbolic system. 

Dependencies are automatically taken care of and unnecessary recalculations kept to a minimum. The 

overriding plus however is the flexibility it allows. If for example an elemental weight percent was known and 

three phases of the mixture comprised this element then Get_Element_Weight can be used to get the weight 

of the element as a function of the structure; ie. 

str... 

prm z1 = Get_Element_Weight(Zr);  

MVW(!m1 0, !v1 0,0) 

str... 

 scale s2 0.001 

prm z2 = Get_Element_Weight(Zr);  

MVW(0, !v2 0,0) 

str... 

 scale s3 0.001 

prm z3 = Get_Element_Weight(Zr);  

MVW(0, !v3 0,0) 

Rearranging the formulae for element weight percent, the scale parameter of one of the phases, say the first 

one, can be written as follows: 
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scale = (0.01 known_Zr Get(sum_smvs_minus_this) - s2 v2 z2 - s3 v3 z3) / (v1 

(z1 - 0.01 known_Zr m1));  

Get(sum_smvs_minus_this) returns the sum of SMVs minus the phase where it is defined. The 

test_example\quant\quant-3.inp demonstrates this constraint with very good convergence. It comprises 4 

phases with three of them comprising Zr atoms. Quant-2.inp demonstrates constraining a weight percent to a 

known value using the macro: 

macro Known_Weight_Percent(& w) 

 { 

scale = (w/(100-w)) Get(sum_smvs_minus_this) / (Get(cell_mass) 

Get(cell_volume)); 

 } 

2.10.2 ... Elemental composition and Restraints 

The xdd dependent keyword element_composition reports the elemental composition for atoms within the 

structures of the xdd, for example: 

Before Refinement: 

xdd... 

elemental_composition 

After Refinement:  

xdd... 

elemental_composition 

{ 

                       Rietveld 

     AL             0.875`_0.021 

     O             26.135`_0.009 

     SI             0.090`_0.003 

     Y              6.289`_0.012 

     ZR            66.612`_0.029 

} 

element_weight_percent $ELEMENT $NAME #: is an xdd dependent keyword that returns the weight 

percent of an element within the corresponding str’s of the xdd. Example usage: 

Before Refinement: 

penalties_weighting_K1 .1 

xdd... 

element_weight_percent Zr+4 zr  0 

restraint = (zr - 65); :  0 

After Refinement:  

penalties_weighting_K1 .1 

xdd... 

element_weight_percent Zr+4 zr  65.0275252` 

restraint = (zr - 65); :  0.0275251892` 

In this example zr is the name given to the element Zr+4 and the restraint shows a known value of 65 (set for 

example by XRF results). The refinement obeys the restraint according to the value set for 

penalties_weighting_K1. 

For restraining a weight percent the following can be used: 

xdd... 

penalties_weighting_K1 .2 

restraint = (Cubic_Zirconia_wt_percent - 36); : 0 

str... 

MVW(0,0, !Cubic_Zirconia_wt_percent 0) 
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Note, the Cubic_Zirconia_wt_percent name which is given to the weight percent; see test examples\quant. 

2.10.3 ... Amorphous phase composition 

If spiked_phase_measured_weight_percent is defined then elemental_composition will report on Rietveld 

values, Corrected values as well as values from the original un-spiked sample. If 

element_weight_percent_known keywords are defined then elemental_composition will additionally report on 

the elemental contents of the amorphous phase, for example, from test_examples\quant\quant-1.inp we 

have: 

 elemental_composition 

 { 

                       Rietveld         Corrected          Original             Other 

     AL             1.176`_0.042      1.059`_0.000      0.000`_0.000      0.000`_0.000 
     O             26.271`_0.017     23.640`_0.832     23.162`_0.849      0.838`_0.849 

     SI             0.104`_0.004      0.094`_0.005      0.096`_0.005      0.000`_0.000 

     Y              6.182`_0.013      5.563`_0.204      5.676`_0.209      0.000`_0.000 

     ZR            66.267`_0.055     59.631`_2.185     60.847`_2.229      2.153`_2.229 

     Other          0.000`_0.000     10.015`_3.224     10.219`_3.290      7.228`_0.212 
 } 

The first second and third columns sum to 100%. The second column corresponds to corrected values 

including the spiked phase. The third and fourth columns relate to elemental weight percents of the original 

phase. The last row of the second column (in purple) corresponds to Get(weight_percent_amorphous), the 

last row of the fourth column (in red) is the amount that is undefined; it comprises the Green number minus 

the elements of the third column excluding the last row.  Note the zeros for Al (in blue); this is due to the 

spiked phase (dummy test data) being the only phase containing Al. 

2.10.4 ... Using a dummy_str phase to describe amorphous content 

If it is known that the amorphous content, (purple number) in the above table comprises a known 

composition, say TiO2, then a dummy_str can be used to describe the amorphous content as follows: 

 dummy_str 

  phase_name "Amorphous" 

  a 5 b 5 c 5 

  space_group 1 

  site Ti occ Ti 1 

  site O occ O 2 

  Known_Weight_Percent(10.0148) 

  MVW(0, 0 ,0) 

*** Note: dummy_str’s void of MVW and sites takes no part in Quantitative analysis. 

The lattice parameters and the chemistry should correspond to a real structure in order for 

Mixture_LAC_1_on_cm and phase_LAC to be correctly calculated; in the case of using the Brindley 

correction these changed values will change the quantitative results. The space group entry can be other 

than P1 so long as the chemistry is correct.  Inclusion of the dummy_str produces: 

 elemental_composition 

 { 

                       Rietveld         Corrected          Original 

     AL             1.059`_0.038      1.059`_0.000      0.000`_0.000 

     O             27.652`_0.015     27.652`_0.975     27.256`_0.995 

     SI             0.094`_0.003      0.094`_0.005      0.096`_0.005 

     TI             6.002`_0.000      6.002`_0.215      6.125`_0.219 

     Y              5.563`_0.012      5.563`_0.204      5.676`_0.209 

     ZR            59.631`_0.050     59.631`_2.185     60.847`_2.229 

     Other          0.000`_0.000      0.000`_3.583      0.000`_3.656 

 } 

Note that the ‘Other’ row becomes zero as the dummy_str has been assigned the amorphous content. The 

change in mixture values are: 
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Without dummy_str 

Mixture_LAC_1_on_cm( 557.47740`_0.58665) 

mixture_density_g_on_cm3  5.26713308`_0.00292681843 

With dummy_str 

Mixture_LAC_1_on_cm( 608.85143`_0.76954) 

mixture_density_g_on_cm3  5.86601008`_0.00407998952 

If XRF results were entered for element_weight_percent_known, for example: 

element_weight_percent_known Zr 63 

element_weight_percent_known O  24 

Then we get: 

 elemental_composition 

 { 

                       Rietveld         Corrected          Original             Other 

     AL             1.059`_0.038      1.059`_0.000      0.000`_0.000      0.000`_0.000 

     O             27.652`_0.015     27.652`_0.975     27.256`_0.995     -3.256`_0.995 

     SI             0.094`_0.003      0.094`_0.005      0.096`_0.005      0.000`_0.000 

     TI             6.002`_0.000      6.002`_0.215      6.125`_0.219      0.000`_0.000 

     Y              5.563`_0.012      5.563`_0.204      5.676`_0.209      0.000`_0.000 

     ZR            59.631`_0.050     59.631`_2.185     60.847`_2.229      2.153`_2.229 

     Other          0.000`_0.000      0.000`_3.583      0.000`_3.656      1.103`_0.431 
 } 

The negative element weight percent for O for the amorphous content reflects the fact that the measured 

XRF value for O is lower than the refinement’s value (note, this example is simply for testing and the XRF 

values used are fictitious).  

2.10.5 ... Quant using hkl_Is or other non-str phases 

dummy_str’s can be used to represent the quantitative results arising from non-str phases. For 

example, consider a phase where the structure is unknown but the chemistry is known and a 

calibration constant has been determined relating the hkl_Is intensities to the scale parameter of the 

hkl_Is phase. In such a case the dummy_str can be written as (see Quant-6.inp): 

dummy_str 

phase_name "Linked Cubic Zirconia" 

Cubic(5.137866) 

space_group F_M_-3_M 

site Zr    x 0        y 0      z 0        occ Zr 0.85  

                                          occ Y  0.15  

site O     x 0.25     y 0.25   z 0.25     occ O  0.962 

scale = hkl_scale; 

Phase_LAC_1_on_cm(0) 

Phase_Density_g_on_cm3(0) 

MVW(0, 0 ,0) 

Note in this case a space group has been entered with structural parameters that looks like a known 

structure; this could occur for example where the structure is known in an ordered state but the 

diffraction pattern comprises a disordered state. In other cases the P1 space group may suffice with 

site occupancies corresponding to the appropriate chemistry. The dummy_str is linked to the hkl_Is 

phase by assigning it scale parameter to the hkl_Is scale parameter. Quant-7.inp is a similar process 

except that a fit_obj is linked to a dummy_str. Graphically the linked dummy_str is plotted with the 

calculated pattern of the hkl_Is phase or fit_obj, for example, Quant-7.inp produces: 
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Here the Blue line corresponds to the dummy_str which plots the calculated pattern of the linked 

fit_obj which in turn comprises a user_y object. The weight percent value determined by the 

dummy_str is also displayed. 

2.10.6 ... Summary of Quant examples 

- Quant-1.inp: a general example showing the use of element_weight_percent_known etc...  

- Quant-2.inp: uses the Known_Weight_Percent macro 

- Quant-3.inp: uses elemental constrain using Get_Element_Weight 

- Quant-4.inp: uses an hkl_Is phase instead of a str phase; uses Known_Weight_Percent on the hkl_Is 

phase. 

- Quant-5.inp: uses a dummy_str to describe an amorphous phase 

- Quant-6.inp: uses a hkl_Is phase to describe a phase; links a dummy_str to the hkl_Is phase to get 

QUANT info.  

- Quant-7.inp: uses a fit_obj that is a function of a user_y object to describe a phase; links a dummy_str 

the fit_obj to get QUANT info.  

2.10.7 ... External standard method 

The method of O’Connor and Raven (1988) has been implemented in both GUI and Launch modes through 

the use of the macros: 

macro K_Factor_MAC_K(mac, k, tot) 

{ 

 move_to xdd 

 local !k_factor_mac_local_ mac 

 local !k_factor_k_local_ k 

 local !k_factor_sum_wps_ = 0; : tot 

}             

macro K_Factor_WP(result) 

{ 

local k_factor_wp_ = 1.6605402 Get(smv) k_factor_mac_local_ / 

k_factor_k_local_; : result 

 if Prm_There(k_factor_sum_wps_) { 

  existing_prm k_factor_sum_wps_ += k_factor_wp_; 

 } 

} 

See test_examples\k-factor. 
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2.11 Learnt Shapes for Background or Otherwise 

The new keywords user_y and fo_transform_X provides a means to use learnt shapes as a background 

function. The test example USER_Y.INP produces the following fit to Quartz using a learnt Pseudo-Voigt. 
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Example usage: 

user_y NAME { #include SOME_FILE } 

user_y NAME SOME_FILE 

fit_obj = NAME;  

fo_transform_X = (X - x) / s; 

The user defined NAME corresponds to a parameter name given to the user_y; it can be used in all 

equations that can be a function of X, for example: 

fit_obj = Exp(NAME^2);  

fo_transform_X is a dependent of fit_obj and it transforms the X used within the fit_obj. For example, NAME 

could have an x-axis that does not match the x-axis of the Yobs pattern; fo_transform_X provides a means to 

transform the Yobs x-axis to the user_y x-axis.  

The user_y NAME {…} usage allow shapes to be typed directly into the INP file using the _x1_dx tag. A 

triangle for example is formulated as follows : 

user_y NAME 

{ 

_x1_dx -1 1 /* the start x and step */ 

0 1 0       /* the shape data       */ 

} 

More than one user_y can be defined and they can be used any number of times in equations that can be a 

function of X. The test example USER_Y.INP loads a single shape, and stretches and scales it five different 

ways onto a diffraction pattern to fit the Quartz triplet. Convergence is as fast as with any other other 

refinement. 

2.12 Emission Profile with Absorption Edges 

lam… 

[modify_peak] 

[modify_peak_apply_before_convolutions] 

[modify_peak_eqn !E] : Can be a function of Get(current_peak) and 

Get(current_peak_x) 

[current_peak_min_x !E] 

[current_peak_max_x !E] 
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The modify_peak keyword can be used to modify peak profiles either before convolutions or after; here’s a 

plot from AL2O3-Spinnel-PAM.INP (see directory test_examples\absorption-edge) that has an identical 

absorption edge modelled for both Al2O3 and Spinnel samples: 

 

modify_peak functionality is realized by using the internal data objects of Get(current_peak_x) and 

Get(current_peak). These two objects return the x-axis wavelength being worked on by the program and the 

current calculated peak intensity at that x-axis position respectively. 

2.13 scale_phase_X keyword 

The scale_phase_X keyword scales Ycalc point by point. It can be used to define say alternate Lorentz 

Polarization factors. Some main points:  

 Can be a function of X 

 Multiple definitions are allowed and each is applied to the pattern.  

 Can occur at the xdd or phase level.  

Here’s an example:  

xdd… 

scale_phase_X…  

str… 

scale_phase_X… 

hkl_Is… 

scale_phase_X… 

The first str is multiplied by the first and second scale_phase_X; the hkl_Is phase is multiplied by the first and 

third scale_phase_X.  

2.14 Magnetic Structure Refinement 

str... 

 [mag_only_for_mag_sites] 

 [mag_space_group $symbol] 

 site... 

  [mlx E] [mly E] [mlz E] [mg E] 

  [mag_only] 

  ' site dependent macros 

  MM_CrystalAxis_Display(mxc, myc, mzc) 

  MM_CrystalAxis_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v) 

  MM_Cartesian_Display(mxc, myc, mzc) 

  MM_Cartesian_Refine(mxc, mxv, myc, myv, mzc, mzv, mlx_v, mly_v, mlz_v) 

Thanks to Branton Campbell and John Evans for expert assistance during the implementation of magnetic 

refinement. Magnetic refinement is implemented using the keywords mlx, mly, mlz, mg and 
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mag_space_group. See example in the test_examples\mag directory as well as the tutorial by John Evans at 

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm. 

The Magnetic intensity is given by: 

Magnetic intensity = Fmagcperp . Fmagcperp
*
 = |Fmagcperp| 

where the superscript 
* 
denotes conjugate gradient and:  

Fmagcperp = Fmagc - (Fmagc . Qhat) Qhat 

Or in words, Fmagcperp is the component of the magnetic vector in the direction perpendicular to the 

scattering vector Q, where  

Q = (L-1)
T 

* h 

Qhat = Q / |Q| 

where 

L is the Cartesian lattice parameters in 3x3 matrix form 

h is the Miller indices in vector form 

* denotes matrix multiplication 

Superscript 
-1 

denotes matrix inverse 

Superscript 
T 

denotes matrix transpose 

(L
-1

)
T
 = reciprocal lattice parameters 

Fmagc in terms of the Cartesian lattice parameters is:  

Fmagc = L * Fmag 

Fmag for the plane h for a single site is:  

Fmag = ∑j (Bj * m) Exp(2π i Uj)  

where the summation is over the equivalent positions j and 

Uj = h.Rj x + h.tj  

x = { x, y, z } = site fractional coordinates 

m = { mlx, mly, mlz } = magnetic moment 

Rj = rotation part of space group operator 

tj = translational part of space group operator 

dj = sj determinant(Rj) = sj det(Rj)  

Bj = sj det(Rj)  Rj = magnetic transformation matrix 

The file MAGDATA.DAT (a GSAS file - permission for its use granted from Robert Von Dreele, the author of 

GSAS) comprises data for calculating magnetic form factors. The Lande splitting factor can be refined using 

the site dependent parameter mg; defaults for mg are obtained from MAGDATA.DAT. Shubnikov groups are 

obtained from the file SHUBNIKOVGROUPS.TXT. 

mag_only: When defined the x-ray component to intensity for the site in question is ignored. 

mag_only_for_mag_sites: When defined the x-ray component to intensity for all magnetic sites for the str in 

question is ignored. 

2.14.1 ... Magnetic refinement warnings/exceptions 

The following two messages: 

1) Warning: Magnetic moment mlx of site Fe has no contribution to Fmag 

2) Magnetic moment mlx of site Fe cannot be refined as it has no derivative 

http://www.dur.ac.uk/john.evans/topas_workshop/tutorial_lamno3_magnetic.htm
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arise when for each group of equivalent positions of a special position the first row of the matrix ∑ jBj*m is 

zero where the j’s sum over the equivalent positions of a special position group. Similar messages for mly 

and mlz are given. Note, the fact that mlx, mly, mlz may or may not be refined and their associated 

constraints are considered. Refinement terminates in the case of message (2) when mlx is being refined. 

2.14.2 ... Displaying Magnetic moments 

Magnetic moments (Occupancy Bj*m) are displayed graphically when ‘view_structure’ is defined. For the 

case where the atom balls are masking the display of the magnetic moment arrows the “Atom size” can be 

varied as shown in the following: 

 

2.14.3 ... ‘Decomposing’  Fmag for speed 

When using magnetic space groups other than 1.1 equivalent positions of the space group are written in 

terms of other equivalent positions.  

Let 

Cj = cos(Uj) 

Sj = sin(Uj) 

Exp( i U) = Cj + i Sj = Euler's formulae   

For two equivalent positions of a special position we have 

U1 = U2 = U 

Fmag1+Fmag2 = s1 det(R1)  R1 m Exp(i U) + s2 det(R2)  R2 m Exp(i U) 

   = (s1 det(R1) R1 + s2 det(R2) R2) m Exp(i U) 

   = c m Exp(i U) 

c is independent of x 

Note, a particular special position could have many equivalent positions. 

If R1  = -R2 and t1  = -t2 for two equivalent positions then  
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U1 = -U2 = U 

Fmag1+Fmag2 = s1 det(R) R m Exp(i U) + s2 det(-R) (-R) m Exp(-i U) 

Now, 

det(R) R = det(-R) (-R) 

or, 

Fmag1+Fmag2 = det(R) R m (s1 Exp(i U) + s2 Exp(-i U)) 

For s1 = s2 

Fmag1+Fmag2 = s1 det(R) R m 2 C 

For s1 = -s2 

Fmag1+Fmag2 = s1 det(R) R m (2 i S) 

If R1 = R2 for two equivalent positions then 

Fmag1+Fmag2 = s1 det(R) R m Exp(i h. R x) Exp(i h.t1) + s2 det(R) R m Exp(i h. R x) Exp(i h.t2) 

   = det(R) R m (s1 Exp(i h.t1) + s2 Exp(i h.t2)) Exp(i h. R x)  

   = c Exp(i h. R x)  

c is independent of x and is calculated only once. 

Many R's can be the same for a particular space group with only the t's changing. 

Calculating C and S 

Exp(i (h . R x + h. t)) = Exp(i h . R x) Exp( i h . t) 

Exp(i h . t) is constant for a particular h and is calculated only once. 

Only unique Exp(i h . R x) are calculated. 

Trigonometric recurrence is used to calculate sines and cosines resulting in three cosine and three sine 

operations per unique equivalent r. In other words a sin and cos is not calculated for each h. 

Note a sin or cos function is equivalent to about 40 to 60 multiplies. 

2.15 Refining on f0, f’ and f’’ 

[f0_f1_f11_atom]… 

 [f0 E] [f1 E] [f11 E] 

Example usage is as follows:  

report_on_str  

load f0_f1_f11_atom f1 f11 { 

Ba @ -0.160127754 2.3954287 

Ge 0.184162081 1.86162161 

} 

High correlations exist between f1 and f11, scale and beq parameters.  

The f0_f1_f11_atom keyword can be used at the str, xdd and global levels. f’ or f’’ can be defined and refined 

independently. Defaults are used when either f’ or f‘’ are not defined. The XRAY-POWDER.INP and TOF.INP 

in the directory test_examples\f0-f1-f11\ demonstrates the use of f0, f1 and f11. 

The f0 parameter can be a function of the reserved parameter D_spacing; for example: 

prm a1 25 min -50 max 50 

  load f0_f1_f11_atom f0 f11 { 
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   Pb+2 

   = a1         Exp(1.058874   (-0.25) / D_spacing^2) + 

     16.496822  Exp(0.106305   (-0.25) / D_spacing^2) + 

     19.984501  Exp(6.708123   (-0.25) / D_spacing^2) + 

     6.813923   Exp(24.395554  (-0.25) / D_spacing^2) + 

     5.233910   Exp(1.058874   (-0.25) / D_spacing^2) + 

     4.065623; ' this is f0 for Pb 

    @ 5 ' this is f11 for Pb 

  } 

For X-ray data f0 is by default obtained from the file atmscat.cpp. For neutron data the f0 parameter 

corresponds to the neutron scattering length. Defaults for neutron scattering lengths are obtained from the 

file neutscat.cpp. Neutron scattering lengths can be refined as demonstrated in test_examples\f0-f1-

f11\TOF.INP. 

 Keyword no_f11 instructs the program to ignore f11. This increases speed with little change in Ycalc.  

 Keyword report_on_str reports on f1 and f11 or neutron scattering lengths used. No values are reported 

when the keyword d_spacing_to_energy_in_eV_for_f1_f11 is used. 

To disable the effects of f0, f1 and f11, for say CeO2, then the following could be used: 

  load f0_f1_f11_atom f0 f1 f11 { 

   Ce+4 1 0 0 

   O-2  1 0 0 

  } 

2.15.1 ... Invalid f1 and f11 

The following message is displayed when there are no valid entries for f ’ and f’’ in the corresponding NFF file: 

Invalid f1 and f11 for O in file …\ssf\o.nff 

   for the wavelength 0.399826. 

   Setting value(s) to zero 

In such cases the user may choose to manually define f’ and f’’ using f1 and f11 keywords respectively, see 

test_examples\f0-f1-f11 directory. Also of use is to view f’ and f’’ NFF files found in the SSF directory using 

the GUI Tool menu; ie. 

 

2.16 Isotopes and Atom Names 

The file mac\tab1.html is no longer used. Instead isotopes.txt is used for obtaining isotope weights. It’s now 

possible to have the following when refining either neutron (ie. the keyword neutron_data is defined) or x-ray 

data and to obtain the correct results without changing the INP str:  

site ... occ Mg ...  

site ... occ Mg+2 ...  

site ... occ 24Mg ...  

site ... occ 26Mg ...  

site ... occ 26Mg+2 ...  

In the cases of ‘Mg’ and ‘Mg+2’ the atomic weight used is the “Standard Weight” as defined in isotopes.txt.  
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In the cases of ‘26Mg’ and ‘26Mg+2’ the atomic weight used is the isotope weight as defined in isotopes.txt. 

Note the ‘+2’ is dropped when searching that file.  

The atomic weight for 24Mg is not the same as that for Mg. When 24Mg is used then the isotope weight for 

24Mg is used. When Mg is defined then the Standard weight is used. The Standard weight corresponds to 

the mean weight of the naturally occurring Mg isotopes.  

In the case of x-rays:  

- atomic scattering factors used (from file atmscat.cpp) for 26Mg and 26Mg+2 corresponds to those of Mg 

or Mg+2 respectively. The numbers occurring at the start of the symbol is dropped when searching 

atmscat.cpp.  

- f’ and f’’ corrections (files in ssf directory) corresponds to that for Mg. In other words the numbers 

occurring at the start of the symbol as well as the charge (ie. ‘+2’ in this case) is dropped. 

In the case of neutrons: 

- scattering lengths used are from the neutscat.cpp file; the charge (ie. ‘+2’) is dropped when searching 

neutscat.cpp. 

Internally the program converts ‘D’ and ‘T’ to ‘2H’ and ‘3H’ respectively.  

2.17 An Accurate Voigt 

The more_accurate_Voigt keyword can be used to over ride the default Pseudo-Voigt approximation to the 

Voigt. The more_accurate_Voigt keyword decreases the error (Voigt_approx – Voigt_true) by a factor of 

around 100. Defining G as the full width at half maximum (FWHM) of a Gaussian and L for the FWHM of a 

Lorentzian the screen shots below are fits to a range of G convoluted with L (Voigts) with L varying from 0.01 

to 0.09 and G+L=1. 

Fitting to the Voigts using pseudo-Voigts:  
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Fitting to the Voigts using an accurate calibration: 

 

Note the very small difference-plots for the accurate calibration.  

Rescaling the plot vertically to show the whole scan we have:  

 

Note that the difference plot simply appears as a straight line.  

The more_accurate_Voigt calibration is accurate and fast. It fits to each true Voigt the following:  

fit_obj = a1 (2 Sqrt(Ln(2) / Pi) / f1) Exp(-4 Ln(2)(X / f1)^2); 

fit_obj = a2 (2 Sqrt(Ln(2) / Pi) / f2) Exp(-4 Ln(2)(X / f2)^2); 

fit_obj = a3 (2 / (Pi f3)) / (1 + 4 (X / f3)^2); 

fit_obj = a4 (4 / (Pi f4)) / (1 + 4 (X / f4)^2)^2; 

One thousand sets of a0,a1,a2,a3,f0,f1,f2,f3 parameters were determined by fitting to 1000 true Voigts with L 

varying from 0 to 1 in steps of 0.001.  

The CREATE.INP file in the TEST_EXAMPLES\VOIGT-APPROX\ directory creates a true Voigt. It uses the 

keyword numerical_lor_gauss_conv. The amount of Lorentzian is entered as a number out of a 1000. A 

number of 500 say would yield a Voigt with a Laurentzian FWHM of 0.5 and a Gaussian FWHM of 0.5. The 

generated true Voigt is calculated by numerically convoluting a lor_fwhm with a gauss_fwhm. The generated 

true Voigt is saved to a file with the name voigtNNNN.xy, where NNNN corresponds to a number between 0 

and 1000. The file generated contains 100,000 data points. The step size used in the convolutions is as 

small as 0.0005 when using a convolution_step of 4.  

TOPAS uses an FFT to actually perform the double summation of the convolution. However, for lor > 500, 

the convolution itself comprises an analytical Lorentzian with a Gaussian comprising straight line segments. 

For lor < 500 then an analytical Gaussian is convoluted with a Lorentzian comprising straight line segments.  

 The file FIT-PV.INP fits a pseudo-Voigt to the generated true Voigt.  

 The file FIT-MORE.INP fits to the generated true Voigt using the c++ equivalent of fit_obj’s.  
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 The file FIT-OBJ.INP fits fit_obj's to the generated true Voigt.  

The difference plot from FIT-PV.INP is in the order of 500 to 1000 times larger than the difference plot from 

FIT-MORE.INP.  

2.18 User defined rotational matrices 

Space group generator - User defined rotational matrices can be added to the file sgrots3.cpp found in the 

main TA directory.  

2.19 Atomic data files and associated sources 

Table 2-1 lists the files read when atomic data is sought. The references refer to the source of the data. In 

many cases the format of the data file corresponds to the original source format. 

Table 2-1  Files and associated sources for atomic data. 

File Comment 

anomdisp.cpp f’ and f’’ for Laboratory X-ray tubes. File is read if there are no associated SSF\*.NFF file 

or if use_tube_dispersion_coefficients is defined. 

atmscat.cpp f0 or Elastic Photon-Atom Scattering, relativistic form factors; data from  

http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html  

atom_colors.def Red, Green, Blue (RGB) CPK atom colors from 

http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm. Used for 

assigning colors to atoms when displaying in OpenGL. 

atom_radius.def Atomic radii and Covalent radii from http://www.esrf.fr/cgi-bin/periodic.    

isotopes.txt Atomic Weights and Isotopic Compositions for All Elements from 

http://physics.nist.gov/PhysRefData/Compositions/ 

magdata.dat Data from GSAS data file via the International tables. Data correction for V entry made 

by Robert Von Dreele. 

neutscat.cpp Neutron scattering lengths from http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-

scatter/n-lengths/LIST~1.HTM  

no_polyhedra.def Disables drawing of polyhedral for atoms listed. 

SSF\*.NFF Anomalous scattering factors f’ and f’’ for a range of wavelengths from 

http://www-cxro.lbl.gov/optical_constants/asf.html 

The present data is in three columns “E(eV),f1,f2” where f'=f1–Z and f''= f2 and the 

conversion from wavelength to energy scale is E(eV)=10^5/(8.065541*Lambda(Ang)). 

MAC\Znn.html X-Ray Mass Attenuation Coefficients from  

http://www.nist.gov/pml/data/xraycoef/index.cfm  

2.20 Removing Phases during a refinement 

The remove_phase keyword (used by the Remove_Phase macro) allows for phase removal during 

refinement. Typical use is as follows:  

http://www.esrf.fr/computing/expg/subgroups/theory/DABAX/dabax.html
http://www.bio.cmu.edu/Courses/BiochemMols/Periodic/ElemList.htm
http://www.esrf.fr/cgi-bin/periodic
http://physics.nist.gov/PhysRefData/Compositions/
http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://www.ccp14.ac.uk/ccp/web-mirrors/neutrons/n-scatter/n-lengths/LIST~1.HTM
http://wwwcxro.lbl.gov/optical_constants/asf.html
http://www.nist.gov/pml/data/xraycoef/index.cfm
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for strs { 

Remove_Phase(0.3, 1) 

} 

Here a phase is removed if its weight percent is below 0.3% and if the error in the weight percent is greater 

than 1%. The phase removal process is executed at the end of a Cycle. Text similar to the following is 

displayed on removal of a phase: 

*** Deleting phase: Corundum *** 

*** Deleting phase: Zincite *** 

... etc... 

Refinement is terminated when no phase is removed during a Cycle. 

2.21 Numerical Lorentzian and Gaussian Convolutions 

For fundamental and pseudo-Voigt peak types, Lorentzian and Gaussian convolutions are 

performed analytically during the calculation of the emission profile Voigt. Therefore when 

lor_fwhm and gauss_fwhm are defined within push_peak and add_pop_1st_2nd_peak keywords 

they are still calculated at the emission profile level. 

3 New GUI functionality 

3.1 Plotting phases above background 

By default phases are now plotted on top of back ground where back ground comprises 

fit_obj’s+bkg. The xdd dependent keyword gui_add_bkg and the fit_obj dependent fit_obj_phase 

can be used to change the defaults, for example, 

xdd..  

       gui_add_bkg !E 

       fit_obj... 

       fit_obj_phase !E 

gui_add_bkg defaults to 1; if it’s zero then phases are not plotted above back ground. 

fit_obj_phase defaults to 1. If gui_add_bkg =1 then the following is added to phases: 

               bkg + (and any fit_obj’s that has fit_obj_phase =1) 

quant\Quant-7.inp shows the use of fit_obj_phase=1 where a fit_obj that is a function of a user_y object, 

that is supposed to be a phase, is plotted on top of back ground using a dummt_str; the dummy_str checks 

the status of the fit_obj’s fit_obj_phase. 

3.2 Plotting fit_objs 

fit_obj’s can be plotted using the following macros: 

macro Plot_Fit_Obj(p, name) 

   { 

      dummy_str 

         phase_name name 

         scale = p; 

} 

macro Plot_Fit_Obj(name) 

   { 

      dummy_str 

         phase_name name 

} 
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See test_examples\voigt-approx\fit-obj.inp for example; ie. 

xdd...  

   fit_obj !f1 = ... 

 Plot_Fit_Obj(f1, “Fit Obj”) 

Plotting is via a dummy_str and the scale parameter of the dummy_str is set to the name given to the fit_obj, 

which in this case is f1.  At the plotting stage the dummy_str borrows the calculated pattern from the fit_obj.  

The scale parameter of the dummy_str has some intelligence built into it such that if scale is not a function of 

a fit_obj name then it will search the place of the item it is a function of for a calculated pattern. For example, 

in the following: 

xdd...  

Plot_Fit_Obj(a, “Fit Obj”) 

   fit_obj = a ... 

   prm a ... 

the ‘a’ parameter lives locally to the fit_obj as it is defined after the fit_obj. Defining the scale parameter of 

the dummy_str in terms of ‘a’ therefore allows the dummy_str to determine where to find the calculated 

pattern to display. In this way macros such as the PV macro can be used and plotted without having to 

define a name for the fit_obj, see test_examples\pvs.inp. 

Sometimes the fit_obj has no name and no parameter that belongs to it; instead of naming the fit_obj or 

rearranging prm definitions the second Plot_Fit_Obj macro can be used: 

xdd...  

   fit_obj =  

Plot_Fit_Obj(“plot previously defined fit_obj”) 

Here the fit_obj defined prior to Plot_Fit_Obj is plotted. 

3.3 Display of Normalized SigmaYobs^2 

Useful for checking SigmaYobs anomalies from VCT or XYE files; here’s an example :  

 

 
 

The normalization is as follows: 

SigmaYobs^2 displayed = SigmaYobs^2 Sum[ Yobs ] / Sum[ SigmaYobs^2] 
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This puts the display of SigmaYobs^2 on a similar scale to Yobs.  For normal x-ray data 

SigmaYobs=Sqrt(Yobs) and hence nothing is done as the displayed plot would simply be equal to Yobs. On 

some data sets, TOF for example, the magnitude of SigmaYobs can be small; thus when refining on multiple 

data sets from different sources the weighting schemes may need to be modified in order to give the desired 

weight to the data sets. The option for display is as follows:: 

 

3.4 Cumulative Chi2 

A kernel operation that results in the following graphical display:  
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 Uses the weighting from the kernel which can be user defined or otherwise.  

 SigmaYobs is used in the weighting if it exists.  

 Prior to graphical display it is scaled to have the same maximum intensity as the maximum of Yobs.  

 Data is obtained from the kernel and thus excluded regions are ignored as shown in the plot above.  

 Tabs for Cumulative Chi2 has been included in the appropriate GUI tabs as seen in the following:  
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3.5 Correlation Matrix display 

A Correlation matrix window activated from the Fit Dialog; it operates in Launch or GUI modes. Example 

output is as follows:  

 

Both the A-matrix and the correlation matrix include penalties/restraints depending on whether 

do_errors_include_penalties and/or do_errors_include_restraints are defined. The display of the matrix can 

be zoomed using Ctrl-MouseWheel, for example:  
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MouseMove over the correlation matrix displays a Hint comprising the corresponding parameter names, 

values and errors. Left Mouse button down and dragging translates the matrix. 

3.6 Fading a structure 

The intensity of atom colours displayed in OpenGL can be adjusted using the Fade spin button of 

the OpenGL options grid; for example: 
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3.7 Normals Plot 

An OpenGL plot of lattice plane Normals with the lengths of the Normals defined by the keyword 

normals_plot. For example:  

normals_plot = Abs(H * K + L^2) + 1; 

normals_plot_min_d .3 

normals_plot_min_d is optional; small values (ie. 0.1) could lead to millions of points and users could blow up 

their computers. Here’s some output from the test example CLAY.INP: 

 

4 tc-inps.bat 

The batch file TC-INPS.BAT found in the main TOPAS directory runs TC.EXE through around 80 test 

examples. Here's a snippet from TC-INPS.BAT 

tc test_examples\mag\mag "#define CREATE_" 

tc test_examples\mag\mag 

tc test_examples\occ-merge "macro aac$ { iters 3000 }" 

The macro called "aac$" instructs the program to place what's in aac$ at the bottom of the INP file. TC-

INPS.BAT takes 3 to 5 minutes to run. Output can be placed into a file as follows: 

tc-inps.bat > some_file 

some_file will contain around 4000 lines of output.  
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5 Interface Specific 

5.1 Improvements to the Grid 

 Data can now be sorted by Double Clicking on Column Headings. Sorting alternates between ascending 

and descending order. On leaving a particular grid the column most recently sorted is remembered. On 

re-entry of that particular grid the data is again sorted according to the saved state. A small < or > sign is 

displayed to the left of the Column heading name. Sorting works for all grids that display data with rows 

that are similar in Type; ie. Peak data, sites etc…. Val and Error columns are sorted numerically. Hkls, 

F^2 and other obvious numeric columns are also sorted numerically. However, Min and Max are sorted 

using strings as they can be equations and hence their fields are strings. 

 CTRL-MouseWheel zooms/un-zooms the text of a grid 

 MouseDownMouseMove for Panning. 

5.2 Mouse operation in OpenGL Graphics  

First some definitions 

 LMB = Left Mouse Button 

 RMB = Right Mouse Button 

 MID = Mouse Wheel or Middle button on Laptops 

 MM = Mouse Moving 

 WM = Wheel moving 

 LMB-D = Left Mouse Button Down 

 RMB-D = Right Mouse Button Down 

 MW-D = Mouse Wheel Down 

 For example, LMB-D- MM is simply dragging with the LMD 

Image rotation/translation operations are:  

 LMB-D- MM rotates the image.  

 LMB-D- MM and quick release initiates continuous rotation.  

 LMD-D-MM on the first 10% of the viewport from the left or the last 10% from the right rotates around an 

axis perpendicular to the screen. This is another way of doing what Shift-LMB-D-MM does but without 

the need for keyboard input. 10% seems a good amount as it does not seem to interfere with normal 

rotation.  

 MW zooms in addition to the usual RMB-D-MM.  

 MID-D-MM translates the image in the plane of the screen. 

Images are rotated around the centre of gravity (or centre of unit cell) unless there’s a change using the 

RMB-D options.  

6 Kernel Specific 

6.1 New keywords 

chi2 mag_space_group 

chk_for_best mg 

current_peak_max_x mlx 

current_peak_min_x mly 

def mlz 
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del_approx modify_peak 

do_errors_include_restraints modify_peak_apply_before_convolutions 

do_errors_include_penalties modify_peak_eqn 

element_weight_percent more_accurate_Voigt 

element_weight_percent_known no_f11 

elemental_composition no_inline 

existing_prm normals_plot 

f0 normals_plot_min_d 

f0_f1_f11_atom numerical_lor_gauss_conv 

f1 numerical_lor_ymin_on_ymax 

f11 out_prm_vals_dependents_filter 

ft_conv out_refinement_stats 

ft_x_axis_range remove_phase 

ft_min report_on_str 

fit_obj_phase return 

fo_transform_X save_best_chi2 

fn scale_phase_X 

generate_these stack 

generate_name_append sx 

gui_add_bkg sy 

layer sz 

lpsd_beam_spill_correct_intensity user_y 

mag_atom_out WPPM_ft_conv 

mag_only WPPM_L_max 

mag_only_for_mag_sites WPPM_th2_range 

tangent_tiny WPPM_correct_Is 

xdd_sum  

 

6.2 New Test Examples 

test_examples\wppm\ 

compare-1.inp      Launch 

cube-ln-normal-1.inp     Launch 

gamma-fit-obj.inp      Launch 

gamma.inp       Launch 

ln-normal-1.inp      Launch 

sphere-fit-obj.inp      Launch 

sphere-gamma-compare-1.inp   Launch 

sphere-gamma-compare-2.inp   Launch 

sphere-gamma-compare-3.inp   Launch 

super-lorentzian.inp     Launch 

s-sphere-1.inp      Launch 

test_examples\ft\ 

create-voigt.inp   Launch 

alvo4a.inp    Launch 

gaussian.inp    Launch 

lorentzian.inp   Launch 

voigt.inp     Launch 

test_examples\single-crystal\ 

ylidma.inp   Launch 

gebaa.inp   Launch 

ae1-adps.inp   Launch 

ae1-auto.inp   Launch 

ae1-manual.inp  Launch 

ae1-approx-a.inp  Launch 

ae5-auto.inp   Launch 

ae14-approx-a.inp Launch 

pn_02_2.inp   Launch 
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test_examples\tof\ 

tof_balzar_br1.inp  Launch 

tof_balzar_sh1.inp  Launch 

tof_bank2_1.inp     Launch 

tof_bank2_2.inp     Launch 

test_examples\user_y\ 

cpd1e.inp    Launch 

user_y.inp     Launch 

test_examples\lp-search\ 

 lp-search-cimetidine.pro  GUI 

lp-search-pbso4.pro   GUI 

lp-search-pbso4.inp   GUI-Launch 

test_examples\absorption-edge\ 

Ni-LaB6.inp    GUI-Launch 

Al2O3-pam.inp   GUI-Launch 

Spinel-pam.inp   GUI-Launch 

Rutile-Anatase.inp  Launch 

Rutile-Anatase-Ni.inp  GUI-Launch 

test_examples\voigt-approx\ 

create.inp  Launch 

fit-more.inp  Launch 

fit-pv.inp   Launch 

fit-obj.inp   Launch 

test_examples\f0-f1-f11\ 

xray-powder.inp   Launch 

tof.inp     Launch 

test_examples\penalties-restraints\ 

rosenbrock-10.inp   Launch 

rosenbrock-10-restraint.inp Launch 

hock.inp      Launch 

rastrigin.inp     Launch 

test_examples\mag\ 

mag.inp     Launch 

mag-2.inp    Launch 

occ-merge.inp   Launch 

mag-only.inp    Launch 

maglamno3_magnetic.inp Launch 

test_examples\quant\ 

quant-1.inp    Launch 

quant-2.inp    Launch 

quant-3.inp    Launch 

quant-4.inp    Launch 

quant-5.inp    Launch 

quant-6.inp    Launch 

quant-7.inp    Launch 

quant-7-create.inp  Launch 

quant-8.inp 

zro2-restraint-wt.inp 

zro2-restraint-xrf-zr.inp 

test_examples\rigid\ 

rigidb.inp    Launch 

rigida-1.inp    Launch 

rigida-2.inp    Launch 

test_examples\rigid-errors\ 

aniline_I_100K_x.inp  Launch 

Aniline_I_8kbar_n.inp  Launch 

test_examples\stacking-faults\ 

kaolinite-layer.inp   Launch 
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debye-old.inp   Launch 

debye-new.inp   Launch 

test_examples\functions\ 

alvo4-fn.inp    Launch 

alvo4-normal.inp   Launch 

fn-test.inp    Launch 

test_examples\laue\ 

 laue.inp     Launch 

test_examples\k-factor\ 

k-factor.inp      GUI-Launch 

k-factor.pro    GUI 

test_examples\ 

bkg-straight-line.inp  Launch 

chi2-ceo2.inp   Launch 

hash_prm.inp    Launch 

more_accurate_Voigt.inp Launch 

occ-constrain.inp   Launch 

out_prm_vals.inp   Launch 

robust.inp    Launch 

scale_phase_X.inp  Launch 

6.3 New Equation Functions 

 

Cosh 

Erf_Approx  

Erfc_Approx  

Error 

Gamma_Ln_Approx  

Gamma_Approx 

Get_Element_Weight 

Ln_Normal_x_at_CD 

Obj_There 

Prm_There 

Round 

Sinh 

Tanh 

Example output from Round: 

prm = Round(.1); :  0.00000 

prm = Round(.5); :  0.00000 

prm = Round(1.6); :  2.00000 

prm = Round(-.1); :  0.00000 

prm = Round(-.5); :  0.00000 

prm = Round(-1.6); : -2.00000 

 

7 Pre-Processor 

7.1 New Macros 

Bkg_Straight_Line 

Cu6_Ni_Edge 

EP_Absorption_Edge_Correction 

EP_Absorption_Edge_Correction_Eqn 

LP_Factor_X 

MM_Cartesian_Display 

MM_Cartesian_Refine 

Out_CIF_Bonds_Angles 

Remove_Phase 

Robust_Refinement 
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7.2 Defining unique parameters within macros 

#m_unique $string assigns a unique parameter name to $string within a macro. This allows new unique 

parameters to be defined within macros without the worry of name clashes. In the example:  

macro Some_macro(b) { prm #m_unique a = Cos(Th); } 

'a' is assigned a unique parameter name and it has the scope of the macro body text. The 

Robust_Refinement and TCHZ_Peak_Type macros are good examples of its use, where for example, the 

former is defined as:  

macro Robust_Refinement 

{ 

 ' Rescale peaks according to robust refinement algorithm  

 prm #m_unique test = Get(r_exp); 

 prm #m_unique N = 1 / test^2; 

 prm #m_unique p0 = 0.40007404; 

 prm #m_unique p1 = -2.5949286; 

 prm #m_unique p2 = 4.3513542; 

 prm #m_unique p3 = -1.7400101; 

 prm #m_unique p4 = 3.6140845e-1; 

 prm #m_unique p5 = -4.45247609e-2; 

 prm #m_unique p6 = 3.5986364e-3; 

 prm #m_unique p7 = -1.8328008e-4; 

 prm #m_unique p8 = 5.7937184e-6; 

 prm #m_unique p9 = -1.035303e-7; 

 prm #m_unique p10 = 7.9903166e-10; 

 prm #m_unique t = (Yobs - Ycalc) / SigmaYobs; 

 weighting = If( t < 0.8, 

  N / Max(SigmaYobs^2, 1), 

  If( t < 21, N ((((((((((p10 t + p9) t + p8) t + p7) 

  t + p6) t + p5) t + p4) t + p3) 

  t + p2) t + p1) t + p0) / (Yobs - Ycalc)^2, 

  N (2.0131 Ln(t) + 3.9183) / (Yobs - Ycalc)^2)); 

 recal_weighting_on_iter 

} 

7.3 Superfluous parentheses and the '&' Type for macros and its arguments 

The pre-processor is an un-typed language meaning that it knows nothing about the type of text passed to 

macro arguments. This has great flexibility but there can be drawbacks; for example, the following:  

macro divide(a, b) { a / b } 

prm e = divide(a+b, c-d); 

expands to the unintended result of:  

prm e = a + b / c - d; 

The writer of the macro could solve this problem by rewriting the macro with parentheses:  

macro divide(a, b) { (a) /( b) } 

Alternatively the & Type can be used for macros that expect equation type arguments. Defining the macro 

with '&' before the arguments as in:  

macro divide(& a, & b) { a / b } 

prm e = divide(a+b, c-d); 
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instructs the pre-processor that the argument is of an equation Type and a check is made to determine 

whether the argument needs parentheses. This results in the correct expansion of:  

prm e = (a+b) / (c-d); 

Even with & types used for arguments, the following:  

macro divide(& a, & b) { a / b } 

prm e = divide(a+b, c-d)^2; 

expands to the unintended:  

prm e = (a + b) / (c - d)^2; 

The writer of the macro could again rewrite the macro to include more parentheses:  

macro divide(a, b) {  ((a) / (b))  } 

Or, define the expansion of the macro itself to have an & Type by placing the & character before the macro 

name itself as follows:  

macro & divide(& a, & b) {  a / b  } 

Expansion of prm e = divide(a+b, c-d)^2 now becomes the intended:  

prm e = ((a + b) / (c - d))^2; 

With the use of the & Type, macros such as Ramp defined in Version 4 as:  

macro Ramp(x1, x2, n) 

{ 

((x1) + ((x2)-(x1)) Mod(Cycle_Iter, (n)) / ((n)-1)) 

} 

can now be written with less parentheses as follows:  

macro & Ramp(& x1,& x2,& n) 

{ 

x1 + (x2-x1) Mod(Cycle_Iter, n) / (n-1) 

} 

7.4 Pre-processor equations and #prm, #if, #elseif, #out, #m_if, #m_elseif, #m_out 

Pre-processor parameters, called hash parameters, can be defined by placing a # before the text prm. 

#prm’s can be a function of other #prm’s and they can be used in #if, #elseif, #m_if and #m_elseif pre-

processor statements. #prm’s are only evaluated at the pre-processor stage of loading INP files (see 

test_examples\hash_prm.inp); they are therefore unknown to the kernel and are totally separate to 

parameters defined using prm.  Pre-processed output can be found in the TOPAS.LOG file when running 

TA.EXE or TC.LOG when running TC.EXE. 

The #out and #m_out allows pre-processor #prm’s values, which can be strings or numbers, to be placed 

into the pre-processed text. For example:  

#prm a = Constant(Rand(0,1)); 

#out a 

will  output a random number between 0 and 1 into the pre-processed file at the position of #out. INP files 

can therefore be manipulated with #prm’s and #if statements with a means of identifying the manipulation 

carried out. 
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The following:  

macro Ex1(a) 

{ 

#m_if a == "b"; 

Yes b 

#m_elseif a == “c”; 

Yes c 

#m_endif 

} 

Ex1("b") 

expands to:  

Yes b 

In the following: 

#prm ran = Constant(Rand(0,1)); 

#if ran < 0.5; 

 view_structure 

#endif 

#if ran < 0.5; 

 view_structure 

#endif 

#if ran < 0.5; 

 view_structure 

#endif 

each call to ‘ran’ in the #if statements would return the same value because of the use of Constant. 

More complicated INP file manipulation is shown in the following:  

#prm space_group_number = 4;  

#if And(space_group_number >= 75, space_group_number <= 142);  

... 

#elseif And(space_group_number >= 16, space_group_number <= 74);  

... 

#endif 

8 Keywords removed 

swap_sites 

try_site_patterns 

break_if_been_there   

hkl_Is_from_hkl4 

do_processes 

9 References 

Coelho, A. A. (2005). J. Appl. Cryst. 38, 455-461. "A bound constrained conjugate gradient solution method 

as applied to crystallographic refinement problems" 

Coelho, A. A; Evans, J.; Evans, I; Kern, A.; Parsons, S. (2011). Powder Diffraction, Vol. 26 Number 4 sup, 

"The TOPAS symbolic computation system" 

David, W.I.F; Matteo, L.; Scardi, P. (2010). Materials Science Forum Vol. 651 pp 187-200 

Leoni, M.; Di Maggio, R.; Polizzi, S; Scardi P. (2004), J. Am. Ceram. Soc. 87, 1133-1140.  



50 
 

O'Connor, B.H.; and Raven, M. D. (1988). Powder Diffraction, Vol. 3, No. 1. "Application of the Rietveld 

Refinement Procedure in Assaying Powdered Mixtures" 

Scardi, P. & Leoni, M. (2001). Acta Cryst. A 57, 604-613.  


