
1

TOPAS 64, Version 6

What’s New

by Alan A. Coelho

September 8, 2016

64 bit address space for GUI and command line executables

Works with 64 bit Windows 7, 8 and 10

Multithreaded

Stacking faults at speed

PDF refinement at speed

Charge-Flipping for neutron data

Surface Plots

Macro enhancements

2

Contents
1 New kernel functionality ... 4

1.1 Introducion .. 4

1.2 Miscellaneous ... 4

1.2.1 TC-INPS.BAT and the aac$ macro ... 4

1.2.2 TOPAS is now 64 bit .. 4

1.2.3 Indexing - Figure of merit .. 5

1.2.4 INP file enhancements Miscellaneous .. 5

1.2.5 out_dependences and out_dependences_for .. 11

1.2.6 The peaks buffer, speed and memory considerations .. 12

1.2.7 Threading .. 12

1.2.8 Using local to assist in using “for … {}” loops .. 14

1.2.9 Charge Flipping and neutron_data ... 15

1.2.10 Error determination using SVD ... 16

1.2.11 Error Propagation using prm_with_error ... 17

1.2.12 New Keywords .. 17

1.2.13 New Functions... 19

1.3 Stacking faults ... 19

1.3.1 Generating the same stacking sequences each run.. 20

1.3.2 The SF_Smooth macro .. 20

1.3.3 Fitting to DIFFaX test diamond data ... 21

1.3.4 Stacking faults from layers of different layer heights ... 21

1.3.5 Rietveld-Generated example .. 22

1.3.6 Refining on layer heights... 22

1.4 PDF refinement ... 23

1.4.1 Inter and Intra molecule FWHMs .. 26

1.4.2 Instrument Sinc function Sinc-1.INP ... 27

1.4.3 Weighting of PDF and 2-Theta type data .. 28

1.4.4 Test_examples\pdf\BEQ-2.INP ... 28

1.4.5 Test_examples\pdf\BEQ-3.INP ... 28

1.4.6 Speeding up refinement with rebin_with_dx_of .. 28

1.4.7 Refining on beq parameters ... 29

3

1.4.8 Structure Solution, Simulated Annealing .. 29

1.4.9 Rigid bodies with PDF data ... 30

1.4.10 Occupancy merging with PDF data ... 30

1.4.11 Equivalence of pdf_gauss_fwhm and beq when there’s one atom type 30

2 New GUI functionality ... 31

2.1 TOF x-axis can be displayed in d-spacing, Q and tof ... 31

2.2 Displaying many files at once .. 31

2.2.1 Surface plots – 2D with offsets ... 31

2.2.2 Inserting peaks and identifying scans ... 32

2.2.3 2D-offset Surface plots.. 32

2.2.4 2D-offset Planview plots ... 34

2.2.5 OpenGL Surface plots .. 35

2.2.6 OpenGL – Weighted difference for colours .. 36

2.3 Normalizing scans to the maximum scan value wiithin a Scan Window 37

4

1 NEW KERNEL FUNCTIONALITY

1.1 Introducion

Directory test-mag have been removed to reduce file distribution size.

1.2 Miscellaneous

1.2.1 TC-INPS.BAT and the aac$ macro

The bath file TC-INPS.BAT runs through over 150 test examples in a time of a few minutes. These

examples play an important role in program testing. Arguments passed via the command line to the

test examples can contain the aac$ macro; if defined aac$ is expanded at the bottom of the INP file.

For example, to terminate refinement after 100 iterations the following could be used:

tc test_examples\pdf\alvo4\rigid "macro aac$ { iters 100 verbose 0 }"

1.2.2 TOPAS is now 64 bit

Version 6 utilizes 64 bit adressing. The command line TC.EXE and the GUI TA.EXE both run on the

Windows 64 bit operating system. It means that all available memory can be used. The 64 bit

compile has resulted in a 10 to 20% increase in execution speed.

1.2.2.1 Limiting Memory Usage – MaxMem.TXT

Accidental INP file errors coupled with 64 bit address space can lead to excessive memory usage. A

wrong decimal place in a lattice parameter for example could lead to the generation of billions of

hkls. In cases where all of RAM is used the Windows 7 and Windows 10 operating systems hang with

the Task Manager being unresponsive. This reason for the ‘hang’ is due to the system swapping

data/programs to and from virtual memory (typically a swap file on the hard disc). This ‘hang’

scenario is typically avoided using option (1) below which is the default. The file MaxMem.TXT,

found in the main TOPAS directory, comprises two floating point numbers A and B and their use is as

follows (all values in Gbytes):

1) If A=0 then the maximum allowed memory usage becomes:

Max_Mem_Allowed = Max_Physical_Memory * B

In other words 75% of the total physical memory

2) If the number in MaxMem.TXT is negative then the maximum allowed memory usage becomes:

Max_Mem_Allowed = Max_Physical_Memory + A

3) If the number in MaxMem.TXT is positive then the maximum allowed memory usage becomes:

 Max_Mem_Allowed = A

The default value in MaxMem.TXT is zero which corresponds to case (1). For all cases, if memory

usage exceeds Max_Mem_Allowed then TC.EXE aborts with the message “Memory allocation limit

reached, increase limit in file MaxMem.TXT”. TA.EXE aborts without a message; instead it creates

5

the empty file called MaxMem-CHK.TXT. Checking the time/date stamp of MaxMem-CHK.TXT reveals

whether TA.EXE aborted due to excessive memory usage.

1.2.3 Indexing - Figure of merit

The figure of merit M used in indexing is as follows:

 1 1 2

,

 2

,

 2

min,uni
i iiciooco QddNNdNM

where
j jioi wwNQ

(1-1)

Where do and dc are the observed and calculated d-spacings, No and Nc the number of observed and

calculated lines used, Nuni the number of unindexed lines found and the summations are over the

used observed indexing lines. Qi is a weighting that assists in the determination of extinction

subgroups where wi could for example be the inverse of the error in the peak positions from a

Pawley refinement (see indexing\MgIr\index.inp). The keyword index_I corresponds to wi. The

formulation of Qi is such that with or without Qi the figure of merit M is of the same order of

magnitude. The reciprocal-space lattice relationship solved during the indexing process (Coelho,

2000) includes Q as follows:

22

222

 /))sin(2)λ / (4)360π(

 (

ohklhkle

klhlhkllkkhh

dWWθZ

 k lX h lXk hX lXkXhX

where 2 hkl

m

ohklhkl dQW

(1-2)

1.2.3.1 Extinction subgroup determination

At the end of an indexing further indexing runs are internally performed across extinction subgroups

in an attempt to determine the most likely subgroup. These internal runs are seeded with already

determined lattice parameters and in most cases the correct extinction subgroup is obtained

without the need for Qi.

1.2.4 INP file enhancements Miscellaneous

1.2.4.1 The num_runs keyword and Preprocessor improvements

[num_runs #]

[out_file = E;]

[system_before_save_OUT { $system_commands }]...

[system_after_save_OUT { $system_commands }]...

num_runs defines the number of times the program executes (Runs) the INP file. Typically an INP file

is run once; num_runs changes this behaviour where the refinement is restarted and then

performed again until it is performed num_runs times. Information from one run to the next can be

exchanged via the out keyword and the include keyword. The INP file is read each Run but is not

updated when num_runs > 1 and out_file is empty. Equations during a Run could well simplify into a

constant, or indeed, the Constant keyword can be used such that during a Run a parametr is not

6

refined. From TB.EXE and Launch mode the Rwp graphical plot is appended such that it looks like

continue_after_convergence. The following INP segment:

num_runs 10

yobs_eqn aac##Run_Number##.xy = Gauss(Run_Number, 1 + Run_Number);

 min -2 max 20 del 0.01

produces on execution the following:

out_file detemines the name of the output file created when refinement terminates. The OUT file

comprises the INP file but with prameter values updated. out_file defaults to the name of the INP

file but with an OUT extension. If num_runs is greater than 1 and out_file is not defined then no OUT

file is saved. This can speed up certain refinements where an OUT file is not needed. out_file is an

equation that needs to evaluate to a string; here are som eexamples:

out_file aac.out ‘ This will throw an exception

out_file = aac.out; ‘ This will throw an exception

out_file = "aac.out";

out_file = String(aac.out);

out_file = If(Get(r_wp) < 10, "aac.out", "");

out_file = If(Get(r_wp) < 10, Concat(String(INP_File), ".OUT"), "");

The standard macro Save_Best uses out_file as follows:

macro Save_Best {

 #if (Run_Number == 0)

7

 prm Best_Rwp_ = 9999;

 #else

 prm Best_Rwp_ = #include Best_Rwp_.txt;

 #endif

 out Best_Rwp_.txt Out(If(Get(r_wp) < Best_Rwp_, Get(r_wp), Best_Rwp_))

 out_file = If(Get(r_wp) < Best_Rwp_, Concat(String(INP_File), ".OUT"), "");

 }

system_before_save_OUT executes the system commands defined in $system_commands string just

before the *.OUT file is updated. The system commands are executed from the directory of the INP

file. $system_commands can comprise any operating system commands. The macro Backup_INP

uses system_before_save_OUT; it‘s defined in TOPAS.INC as:

macro Backup_INP {

 system_before_save_OUT {

 copy INP_File##.inp INP_File##.backup

 }

}

system_after_save_OUT executes the system commands defined in $system_commands string just

after the *.OUT file is updated.

1.2.4.2 Reserved macro Names

The following are internally generated macros that can be used in INP files.

ROOT: Returns the root directory of the program.

INP_File: Returns the name of the current INP file being without a file path or extension.

Run_Number: Returns the current run numer.

File_Can_Open($file): Returns a 1 if $file can be opened or 0 of it can‘t be opened.

Running an INP file called AAC.INP from TC.EXE where AAC.INP comprises:

ROOT

INP_File

Run_Number

File_Can_Open(aac.xy)

and AAC.XY exists will produce in TC.LOG the following:

c:\topas-6\

aac

0

1

8

1.2.4.3 The #list directive – creating arrays of macros

#list creates arrays of macros with a single implied argument than can be expanded depending on

the value of the single implied argument. For example, the following creates three arrays of macros

called File_Name, Temperature and Time.

#list File_Name & Temperature(, & la) Time {

 File0001.xy 300 0.0

 { File0002 .xy } 320 10.2 ' Line with curly brackets

 File0003.xy 340 21.0

 File0017.xy { 360 + la } 28.9 ' Line with curly brackets

 File0107.xy 380 101.2

}

An element of the array is invoked using the first argument of the macro. In the case of File_Name

and Time the first argument is implied. In the case of Temperature the first argument is empty as it

needs to be. When the macro is invoked the first argument is a # type equation that must equate to

an integer. Here’s an example use of the File_Name macro in the above list:

xdd File_Name(Run_Number)

Curly brackets (as seen in the above list) can be used as delimiters within #list. The following:

File_Name(1)

Temperature(1,)

Temperature(3, Get(la) + 0.01)

will produce on expansion:

File0002 .xy

(320)

(360 + (Get(la) + 0.01))

Using curly brackets as delimiters allows for curly brackets themselves to be part of the macro body.

1.2.4.4 The File_Variable and File_Variables macro

The File_Variable macro can be used to run a series of runs with parameters changing in a user

defined manner; the macro is defined in TOPAS.INC as follows:

macro File_Variable(c, x_start, dx) {

 #if (Run_Number == 0)

 #prm c = x_start;

 #else

 #prm c = #include c##.txt;

 #endif

 #prm c##_next = c + dx;

 out c##.txt Out(#out c##_next)

}

Using File_Variable as follows:

File_Variable(occ, 0, 0.1)

9

Will generate a file called occ.txt for each Run with values ranging from 0.1 to 1 in steps of 0.1. A

#prm is defined each run with the corresponding values. #out can be used to place the #prm into the

INP file, for example, the following:

iters 0

num_runs 11

File_Variable(occ, 0, 0.1)

macro Out_File { Occ##Run_Number##.Out }

out_file Out_File

system_after_save_OUT {

 #if (Run_Number)

 type Out_File >> aac.out

 #else

 type Out_File > aac.out

 #endif

}

yobs_eqn !aac.xy = 1;

 min 10 max 50 del 0.01

 CuKa1(0.0001)

 Out_X_Ycalc(occ##Run_Number##.xy)

 STR(F_M_3_M)

 scale @ 0.0014503208

 Cubic(5.41)

 site Ce1 occ Ce+4 = #out occ; beq 0.2028

 site O1 x 0.25 y 0.25 z 0.25 occ O-2 1 beq 0.5959

will generate 11 *.XY files each generated with a different occupancy for the Ce1 site as detemined

by the occ #prm. The names of the files would be occ0.xy to occ10.xy. Additionally, using the

system_after_save_OUT keyword the file AAC.OUT will contain a concatenation of all the *.OUT

files.

To iterate over two variable, pa and pb say, then the File_Variables macro, defined in TOPAS.INC as:

macro File_Variables(a, a1, a2, da, b, b1, b2, db) {

 #if (Run_Number == 0)

 #prm a = a1;

 #prm b = b1;

 #else

 #prm a = #include a##.txt;

 #prm b = #include b##.txt;

 #endif

 #prm a##_next = If(b >= b2, a + da, a);

 #prm b##_next = If(b >= b2, b1, b + db);

 out a##.txt Out(#out a##_next)

 out b##.txt Out(#out b##_next)

}

can be used as follows:

10

iters 0

num_runs 36

File_Variables(pa, 0, 1, 0.2, pb, 0, 1, 0.2)

prm !pa = #out pa; prm !pb = #out pb;

out papb.txt append

 out_record out_eqn = pa; out_fmt "(%.1f, "

 out_record out_eqn = pb; out_fmt "%.1f) "

 #if (pb == 1) Out_String("\n") #endif

On running the above the PAPB.TXT file contains:

(0.0, 0.0) (0.0, 0.2) (0.0, 0.4) (0.0, 0.6) (0.0, 0.8) (0.0, 1.0)

(0.2, 0.0) (0.2, 0.2) (0.2, 0.4) (0.2, 0.6) (0.2, 0.8) (0.2, 1.0)

(0.4, 0.0) (0.4, 0.2) (0.4, 0.4) (0.4, 0.6) (0.4, 0.8) (0.4, 1.0)

(0.6, 0.0) (0.6, 0.2) (0.6, 0.4) (0.6, 0.6) (0.6, 0.8) (0.6, 1.0)

(0.8, 0.0) (0.8, 0.2) (0.8, 0.4) (0.8, 0.6) (0.8, 0.8) (0.8, 1.0)

(1.0, 0.0) (1.0, 0.2) (1.0, 0.4) (1.0, 0.6) (1.0, 0.8) (1.0, 1.0)

1.2.4.5 Equation String, Concat and Variable_Name_From_String functions

A distinction is made between parameter names and strings. Text occuring between double

quotation marks or between brackets in the String function are deemed as String types. Note, the

output from the following:

prm aabb = 1.234;

prm sasb = 4.321;

prm sa = "aa";

prm sb = "bb";

prm sc = sb;

prm = Variable_Name_From_String(Concat(sa, sc)); : 1.23400`

prm = Variable_Name_From_String(Concat(String(sa), String(sb))); : 4.32100`

The arguments of Concat are by default variable names and not strings. Here are some examples:

prm = Concat("a", "b", "c"); ' result = "abc"

prm = Concat(String(a), "b", "c"); ' result = "abc"

prm p = “a“; prm = Concat(p, "b", "c"); ' result = "abc"

The Save_Best macro uses strings as follows:

macro Save_Best

{

 #if (Run_Number == 0)

 prm Best_Rwp_ = 9999;

 #else

 prm Best_Rwp_ = #include Best_Rwp_.txt;

 #endif

 out Best_Rwp_.txt Out(If(Get(r_wp) < Best_Rwp_, Get(r_wp), Best_Rwp_))

 out_file = If(Get(r_wp) < Best_Rwp_,Concat(String(INP_File),".OUT"), "");

}

11

1.2.4.6 dummy and dummy_prm keywords

The dummy keyword reads a word from the input stream. dummy_prm is similar except it reads

parameter dependent text. For example, in the following the text in Red is loaded by dummy_prm

and ignored by the Kernel.

load xo dummy_prm I

 {

 10 = 1/Max(0.00023, 0.0001); min 10 max = Val 2; @ 100

 ...

1.2.5 out_dependences and out_dependences_for

out_dependences $user_string

out_dependences_for $user_string $object_name

out_dependences outputs dependences for the most previously defined prm or local parameter. For

example, the following:

iters 1

prm d 1

prm e 1

prm f 1

prm c = e + f;

prm b = d + e;

prm a = b + c;

out_dependences a_tag

penalty = a^2;

produces on refinement termination the following in standard output (fit window or DOS command

line):

out_dependences a_tag prm_10

Object name followed by prm name

prm_10 e

prm_10 f

prm_10 d

out_dependents_for is similar except that it names an object that is not a parameter, for example,

the following lists independent refined parameters associated with the most recently defined rigid

body.

 rigid

 …

out_dependents_for tag_1 rigid

There are many $object_name’s that are valid. Basically all parameters can be tagged, e.g.

x, y, z, occ, beq, u11, u22, u33, u12, u13, u23, a, b, c, al, be, ga, etc…

In addition the following non-parameters can be tagged:

12

site, rigid, sites_restrain, lat_prms, gauss_conv, lor_conv, all_scale_pks,

th2_offset_eqn

1.2.6 The peaks buffer, speed and memory considerations

Anisotropic peak shapes results in the peaks buffer holding as many peaks as there are hkls. For

problems with 100,000s of peaks the calculation time and storage of the peaks buffer can be

prohibitive. This situation can be mitigated using the phase dependent keyword

peak_buffer_based_on.

[str...] [hkl_Is...] [xo_Is...] [d_Is...]

 peak_buffer_based_on !E...

peak_buffer_based_on_tol !E

The normal means of determining the size of the peak buffer is over ruled when

peak_buffer_based_on is defined. With peak_buffer_based_on peaks are grouped accoding to the

peak_buffer_based_on criterion. For example, to insert a peak into the peak buffer at x-axis intervals

of 1 then the following can be used:

 peak_buffer_based_on = Xo;

peak_buffer_based_on_tol 1

Thus peaks with similar Xo’s, as defined by peak_buffer_based_on_tol, are grouped. Occasionally

peaks that are a function of hkls have groups of hkls that are of the same peak shape and at a similar

x-axis position. The following demonstartes how to group these peaks such that a single peak shape

is calculated.

peak_buffer_based_on = Xo;

 peak_buffer_based_on_tol .01

 peak_buffer_based_on = sh;

 peak_buffer_based_on_tol 1e-7

Where sh can be a spherical harmincs parameter or an equation describing hkl dependence or a

march_dollase parameter. When more that one peak_buffer_based_on is defined then peak groups

formed obey all of the peak_buffer_based_on‘s.

peak_buffer_based_on disables the peak stretching procedures and any defined

aberration_range_change_allowed. peak_buffer_based_on can be a function of the reserved

parameters H, K, L, M, D_spacing, X, Xo, Th.

Depending on the problem at hand smaller values such as 1e-7 can significantly reduce the

number of peaks stored in the peaks buffer (a factor of 15 at times) without significantly affecting

Rwp. A negative value for peak_buffer_based_on_tol will force a calculation for each peak resulting

in indepent hkl peak shapes, for example:

 peak_buffer_based_on 1

 peak_buffer_based_on_tol -1

1.2.7 Threading

TOPAS is threaded to a large extent; this allows the utilization of multiple processors which results in

faster program execution. The degree of speedup is computer and problem dependent. For non-

13

trivial problems the gain is 2 to 4 for a 4 core laptop PC with four i7 processors as seen in the

following table.

 Time (secs) Gain

INP File Comment V6 V5 V4 V4/V6 V5/V6

\ft\alvo4a "#define TEST_ #define USE_FT_

#define USE_SH_" ft, spherical harmonics 1.70 6.75 - - 3.97

\absorption-edge\Al2O3-pam Absorption edge, modify peak 1.46 5.67 - - 3.87

\cime-z-auto "#define TEST_2_" no decompose 7.08 25.03 18.70 2.64 3.54

\tof\tof_bank2_2 user_defined_convolution 0.18 0.63 0.53 2.93 3.49

\wppm\cube-ln-normal-1 "#define TEST_" 2.34 8.05 - - 3.44

\alvo4a "#define TEST_" 1.22 3.95 5.52 4.52 3.24

\single-crystal\ae14-approx-a "#define TEST_" 1.03 3.31 11.47 11.14 3.21

\mag\mag "#define TEST_" 1.09 3.20 - - 2.94

\single-crystal\pn_02_2-adps 3970 parameters 6.32 17.37 27.88 4.41 2.75

\single-crystal\ae14-adps 0.29 0.78 1.27 4.46 2.73

\li250 0.39 1.06 0.81 2.08 2.72

\tube-tails "#define TEST_" 1.48 3.80 3.20 2.16 2.56

\pbso4a "#define TEST_" 2.29 5.74 6.42 2.80 2.50

\single-crystal\pn_02_2 "#define TEST_1_" 3.23 8.01 11.73 3.63 2.48

\sp\serine_I_evans_N_ta_bang_rot-z z-matrix 0.67 1.62 2.35 3.51 2.41

\ft\alvo4a "#define TEST_ #define USE_FT_" ft, no spherical harmonics 0.38 0.91 - - 2.38

\ft\alvo4a "#define TEST_" no ft, no spherical harmonics 0.21 0.48 - - 2.29

\single-crystal\ae14-adps "#define TEST_" no approximate_A 0.57 1.31 5.74 10.04 2.29

\capillary-lpsd\capillary-simulated 0.10 0.22 - - 2.28

\y2o3a 0.24 0.54 0.44 1.82 2.25

\peak-intensity-extraction\zhu3lebail 0.16 0.34 0.49 3.14 2.20

\sp\serine_I_evans_N_ta_bang_rot-z 0.82 1.79 2.28 2.78 2.18

\Voigt-approx\fit-obj.inp "#define TEST_" 4.39 9.55 - - 2.18

\zro2 "#define TEST_" 1.87 3.82 - - 2.05

\cime-z-auto "#define TEST_1_" decompose 6.95 13.87 15.20 2.19 2.00

\k-factor\k-factor 0.33 0.64 - - 1.95

\single-crystal\pn_02_2 "#define TEST_2_" no approximate_A 25.68 49.30 97.15 3.78 1.92

\mag\JohnEvans\jsoe_fit_p1_tofullproftric_0

1 "macro aac$ { iters 30 }" 4.00 7.61 - - 1.90

\peak-intensity-extraction\pawley1 "#define

TEST_" 1.73 3.16 3.98 2.30 1.83

\cf\cf-1a7y “#define TEST_” Charge Flipping 12.87 23.40 25.81 2.00 1.81

\ft\alvo4a "#define TEST_ #define USE_SH_" no ft, spherical harmonics 0.53 0.95 - - 1.79

\sp\serine_i_evans_n_ta_bang_rot 0.74 1.27 1.90 2.57 1.71

\pvs "#define TEST_" 1.22 2.08 4.94 4.05 1.70

\stacking-faults\kaolinite "#define TEST_1_

#define Speed" with Speed 0.58 0.97 - - 1.66

\stacking-faults\kaolinite "#define TEST_1_" 3.10 4.96 - - 1.60

\clay 0.75 1.15 2.90 3.87 1.53

\tof\tof_bank2_1 "#define TEST_" 0.60 0.92 2.28 3.80 1.53

14

\occ-merge "#define TEST_" 3.37 4.90 6.20 1.84 1.45

\simon\alan Many smalll strs 0.73 0.97 3.36 4.60 1.33

Attention has been paid to reducing memory usage at the thread level. This is particularly apparent

when using rigid bodies or occupancy merge where Version 6 uses far less memory than Version 5.

Except for penalties all items are threaded and they include:

- Peak generation

- All colvolutions

- All derivatives that are a function of Ycalc

- Equations that are a function of changing variables such as X, Th, D_spacing etc...

- Pawley refinement

- Strucure refienment

- Charge Flipping

- Magnetic refinement

- Stacking faults

- PDF refinement

- Conjugate gradient solution method

- Indexing

1.2.7.1 Setting the maximum number of threads - MaxNumThreads.TXT

The maximum number threads available is used by default. The user can limit the maximum number

of threads by editing the file MaxNumThreads.TXT. This file is read on porgram startup; it contains a

single number, lets call it Max_Threads_File, which defines the maximum number of threads. Non-

existance of the file or a Max_Threads_File of zero results in the porgram using the maximum

number of threads available. If Max_Threads_File is negative then the maximum number of threads

is set to the following:

Max_Number_Threads = Max(1, Max_Threads_File + Max_Threads_Available);

1.2.8 Using local to assist in using “for … {}” loops

The following parameters have had their status changed from global to ‘local’ allowing their use in

‘for’ loops.

march_dollase $Name

spherical_harmonics_hkl $Name

sites_geometry $Name

sites_distance $Name

sites_angle $Name

sites_flatten $Name

To constrain the march_dollase parameter, as used in the PO macro, to the same value within a “for

xdds { for strs { … }}” construct across two or more structures then simply give them the same name,

for example:

PO(po1, 0.8, , 1 0 4)

15

See examples po-constrained-create.inp and po-for.inp in the test_examples\po-constrained

directory. Note also the use of “if Prm_Then(…) { … }” rather than “for strs 1 to 1 {…}” to facilitate the

writing of the INP file.

The $Name in spherical_harmonics_hkl is ‘local’ but the spherical harmonics coefficients are global.

In the following:

 PO_Spherical_Harmonics(sh2, 8 load sh_Cij_prm {

 k00 !sh2_c00 1.0000

 k41 sh2_c41 0.1000

 k61 sh2_c61 -0.2000

 k62 sh2_c62 0.3000

 k81 sh2_c81 -0.4000 })

the sh2 parameter is local to the str and the coefficients k00, k41 etc… are global. This allows the

constraining of coefficients across different structures within “for strs”; see examples posh-

constrained-create.inp and posh-for.inp in the test_examples\po-constrained directory:

1.2.9 Charge Flipping and neutron_data

The neutron_data keyword informs the charge flipping routine that neutron scattering lengths are to

be used. It also results in the following default neutron flipping routine being used:

flip_equation =

If(And(Get(density) < Get(threshold), Get(density) > 0.4

Get(min_density)),

-Get(density),

 Get(density)

);

The flip_neutron equation defines the 0.4 in the above equation. For example, the following can be

used to change the default to 0.5:

flip_neutron = 0.5;

The tangent formula is made less accurate due to the negative scattering of H atoms. However, if

positive scattering lengths are dominant then the tangent formula can stabilize refinement. For

example, try:

Tangent(.3, 30)

tangent_scale_difference_by = Ramp(1, 0, Nc);

See test_examples\cf\neutron-cime\cf-neutron.inp

1.2.9.1 Powder data, the A matrix and the Tangent formula

In the case of charge-flipping from powder data TOPAS uses the diagonally normalized A-matrix

cf_in_A_matrix (see example cf\cf-cime.inp), which we will call D, from a Pawley refinement (see

example cf\cf-cime-pawley.inp) to modify normalized structure factors Eh calculated during the

charge-flipping process; this produces better results than using reflections output in a SHELX format.

Equation (1-3) shows how the structure factors are modified.

16

,,

,,

,modified,,
whcalc

whobs

calchcalch
I

I
EE

where k kcalckhwhcalc
II

,

 2

,

,,
 D and k kobskhwhobs

II

,

 2

,

,,
 D

(1-3)

The subscripts h and k corresponds to reflections h and k respectively and the summation in k is over

all reflections. Icalc,k and Iobs,k corresponds to observed and calculated intensities. Equation (1)

modifies the calculated intensities to include intensities from overlapping peaks. When there’s no

overlap Di,i=1 and Di,j=0 and the calculated intensities as well as Eh are not modified. When using the

direct-methods tangent formula within the charge-flipping process as described by Coelho (2007),

the D matrix is also used to modify Eh values used in triple phase relationships as shown in equation

(2).

)(1 ,,modified,, hhcalchhobshobs qEqEE

where k khhq 2

,D

(1-4)

Eobs,h and Ecalc,h corresponds to tangent formula Eh values calculated from the observed and

calculated intensities respectively. Ecalc,h is typically not used in the tangent formula, however,

intensities used for determining Eobs,h can be grossly in error due to peak overlap. Equation (2)

therefore influences triple phase relationships by weighing Eobs,h by qh; when there’s no overlap qh=1

resulting in no modification. When there’s significant overlap then qh is small and the influence of

triple phase relationships using the h reflection is reduced. Equation (2) also includes a (1- qh)

portion of Ecalc,h thus stating that when there’s significant overlap the calculated Eh is to be more

trustworthy than the observed Eh. Equation (1-4) corrects for errors in Eh when Iobs is similar to Icalc;

this assists in reducing the goodness of fit value thus enhancing the chances of solving the structure.

1.2.10 Error determination using SVD

Errors have previously been determined from a covariance matrix obtained by LU decomposition.

Version 6 uses Singular Value Decomposition (SVD) with resulting errors typically smaller for strongly

correlated parameters. Additionally SVD errors more closely resemble those obtained by the boot

strap method. bootstrap_errors are potentially more accurate as it considers parameter limits; for

example the fact that intensities are positive is not considered by matrix inversion.

The keyword use_LU_for_errors can be used to force the use of LU decomposition. The three means

of determining errors are demonstrated in a Pawley refinement of Y2O23 in the following INP files:

Test_examples\svd-errors\y2o3a-lu.inp

Test_examples\svd-errors\y2o3a-svd.inp

Test_examples\svd-errors\y2o3a-boot.inp

Comparisons showing the similarity between the bootstrap and SVD errors are seen in the following

INP snippets:

LU Full_Axial_Model(12, 15, 12, 5.1, @ 8.56191`_0.06668)

SVD Full_Axial_Model(12, 15, 12, 5.1, @ 8.56190`_0.05045)

Boot Full_Axial_Model(12, 15, 12, 5.1, @ 8.56191`_0.04988)

17

LU ZE(@, 0.08739`_0.00037)

SVD ZE(@, 0.08739`_0.00018)

Boot ZE(@, 0.08739`_0.00020)

LU Cubic(@ 10.605643`_0.000013)

SVD Cubic(@ 10.605643`_0.000019)

Boot Cubic(@ 10.605643`_0.000020)

LU CS_L(csl, 369.29260`_10.37269)

SVD CS_L(csl, 369.29260`_3.13254)

Boot CS_L(csl, 369.27962`_2.92401)

LU bkg @ 199.402275`_21.4050278 -8.89848018`_1.85486669 47.9112026`_1.841 83168..

SVD bkg @ 199.407893`_1.12005938 -8.91085058`_1.84031795 47.9154076`_1.69533286...

Boot bkg @ 199.402275`_0.92177244 -8.89848018`_1.47936429 47.9112026`_1.20647356...

 LU SVD Boot

0 0 2 ... 1.02580`_0.12061 1.02578`_0.06440 1.02580`_0.04088

2 1 1 ... 65.81458`_0.43091 65.81449`_0.43023 65.81458`_0.33495

0 2 2 ... 0.00000`_0.07691 0.00003`_0.07645 0.00000`_0.00138

2 2 2 ... 1197.20758`_2.76303 1197.20695`_2.5964 1197.20758`_3.88388

3 2 1 ... 2.55249`_32911418.00252 2.55243`_0.12020 2.55249`_0.07342

2 3 1 ... 2.55249`_14161941.24442 2.55243`_0.12020 2.55249`_0.07342

0 0 4 ... 374.70367`_1.83981 374.70343`_1.71262 374.70367`_1.46988

4 1 1 ... 88.85977`_0.91217 88.85964`_0.91858 88.85977`_0.65040

4 0 2 ... 10.65522`_16487463.58725 10.65514`_0.26162 10.65522`_0.19312

0 4 2 ... 10.65522`_16487463.58725 10.65514`_0.26162 10.65522`_0.19312

3 3 2 ... 141.18328`_1.24215 141.18308`_1.28901 141.18328`_1.07037

4 2 2 ... 21.67021`_0.61141 21.67012`_0.59628 21.67021`_0.42625

3 4 1 ... 119.04993`_124057100727963620 119.04970`_0.91382 119.04993`_0.88560

4 3 1 ... 119.04993`_124057100727963630 119.04970`_0.91382 119.04993`_0.88560

5 2 1 ... 44.77524`_31163203794483688 44.77511`_0.63035 44.77524`_0.43513

2 5 1 ... 44.77524`_31163203794483724 44.77511`_0.63035 44.77524`_0.43513

0 4 4 ... 1558.50793`_5.05350 1558.50756`_5.1797 1558.50793`_7.02290

4 3 3 ... 91.53419`_1.30219 91.53401`_1.37722 91.53419`_0.94397

Note the very large errors obtained by LU-decomposition for intensities that are 100% correlated.

1.2.11 Error Propagation using prm_with_error

Fixed parameter errors determined outside of refinement can be included and propagated to

dependent parameters using the keyword prm_with_error. For example, consider the INP snippet

(see test_example\prm-with-error.inp):

xo_Is

 xo 0 I = 10 t i;

 prm i 9.99999`_0.00065 min 1e-6

 prm_with_error !t 1_0.33

 prm t_squared = t^2; : 1.00000`_0.66000

Here the parameter is defined using prm_with_error and with an error of 0.33; this error is then

used to determine errors for dependent parameters, such as t_squared, that are a function of t.

1.2.12 New Keywords

Typically keywords can be placed anywhere within an allowed scope. Due to the increasing number

of keywords Version 6 introduces delimited keyword blocks which at present only applies to the

generate_stack_sequences block. Keywords that are dependents of generate_stack_sequences can

only be used within the generate_stack_sequences block. This avoids keyword name clashes and

allows for keywords to be more readable. For example, generate_stack_sequences has the

depdnents of ta, tb and tz which are also keywords used by the translate keyword dependents. Use

18

of these kewyords however is possible as generate_stack_sequences uses opening and closing curly

brack delimiters; as follows:

generate_stack_sequences {

 ' generate_stack_sequences dependents placed here

 gauss_fwhm 0.02 ' non-generate_stack_sequences depndent

}

Non-dependent keywords of generate_stack_sequences can still be placed within the

generate_stack_sequences block.

New Version 6 keywords are as follows:

a_add

b_add

flip_neutron

generate_stack_sequences

height

layers_tol

match_transition_matrix_stats

n

number_of_sequences

number_of_stacks_per_sequence

num_runs

num_unique_vx_vy

n_avg

out_dependences

out_dependents_for

out_file

pdf_convolute

pdf_data

pdf_scale_simple

peak_buffer_based_on

peak_buffer_based_on_tol

prm_with_error

save_sequences

save_sequences_as_strs

system_after_save_OUT

system_before_save_OUT

to

transition

use_layer

use_LU_for_errors

z_add

convolute_X_recal

pdf_for_pairs

pdf_gauss_fwhm

pdf_info

pdf_only_eq_0

pdf_ymin_on_ymax

19

pdf_zero

1.2.13 New Functions

Gamma_P(a, x): Returns the incomplete Gamma function P(a, x)

Gamma_Q(a, x): Returns the incomplete Gamma function Q(a, x) = 1-P(a,x)

1.3 Stacking faults

[generate_stack_sequences] {

 [number_of_sequences !E]

 [number_of_stacks_per_sequence !E]

 [save_sequences $file]

 [save_sequences_as_strs $file]

 [layers_tol !E]

 [n_avg !E]

 [num_unique_vx_vy !N]

 [match_transition_matrix_stats { ... }]

 [transition $transition_name]...

 [use_layer $layer]

 [height E]

 [n !N]

 [to $to_transition_name !E]...

 [ta E] [tb E] [tz E]

 [a_add E] [b_add E] [z_add E]

}

' Get(generated_c)

Examples:

test_examples\stacking_faults\

fit-1.inp

fit-2.inp

fit-3.inp

test_examples\stacking-faults\Rietveld-Generate\

Rietveld-Generate\Create-Sequences.inp

Rietveld-Generate\Rietveld-Generate.inp

Rietveld-Generate\Fit-to-Rietveld-Generated.INP

Rietveld-Generate\Rietveld-Generated-200-2000.xy

Rietveld-Generate\strs-200-2000.txt

Stacking fault generation and refinement can now be performed at speeds that make routine

analysis possible.

generate_stack_sequences generates sequences of stacks from the transition matrix described by

the transition keywords. The opening and closing braces of {} corresponds to a block where

keywords local to generate_stack_sequences can be used. Outside of the braces the

generate_stack_sequences can’t be used. Get(generated_c) is updated after generation of the

sequences with the average thickness of the sequences. It can be used to set the c lattice parameter.

20

num_unique_vx_vy: On termination of refinement the number of unique { sx, sy } stacking vector

coordinates is reported for all layer types.

transition: defines a ‘from’ transition with the name $transition_name. The transition uses the layer

defined in use_layer.

to: defines the to-transition. $to_transition_name must be a defined $transition_name.

n returns the number of transitions generated for the corresponding to to-transition.

height: can be used instead of z_add keywords.

ta, tb: defines the stacking vector x and y coordinates in terms of the crystallographic a and b axes.

a_add, b_add: defines the stacking vector x and y coordinates relative to the previous stacking

vector in terms of the crystallographic a and b axes.

tz: defines stacking vector z coordinate along the crystallographic c axis in Å.

add_z: defines stacking vector z coordinate along the crystallographic c axis in Å relative to the

previous stacking vector.

1.3.1 Generating the same stacking sequences each run

To generate the same set of stacking sequences each run the random number generated can be

seeded with a constant seed using seed, for example:

seed #number

#number is a constant integer. Each #number generates its own unique set of random numbers.

Generating identical sets of stacking sequences is useful when changes in Rwp that excludes stacking

sequence variation is required.

1.3.2 The SF_Smooth macro

Stacking faulted calculated patterns can contain ripples when the peak shapes are small or when

there’s too few layers stacked. The SF_Smooth macro, defined in TOPAS.INC smooths out these

ripples such that small supercells can approximate large supercells; this crease computation speed

and reduces memory usage. All stacking fault examples uses SF_Smooth; typical usage is as follows:

 SF_smooth(@, 1, 1)

The refined parameter adjust the width of a Gaussian convolution that is dependent on hkls and the

intensities of the reflections. The last argument (the ‘1’) can be used to adjusted the tolerance of a

peak_buffer_based_on keyword used in SF_Smooth. The definition is as follows:

peak_buffer_based_on = idl;

peak_buffer_based_on_tol = Max(0.01 idl, Peak_Calculation_Step 0.5 s);

Reducing s increases the number of peaks in the peaks buffer and increases the accuracy of the

calculated pattern. Typically s=1 is sufficient.

21

1.3.3 Fitting to DIFFaX test diamond data

Fit-1.INP uses generate_stack_sequences to fit to data generated from the DIFFaX suite (Treacy,

1991); INP segment that generates the sequences looks like:

 generate_stack_sequences {

 number_of_sequences Nseqs 200

 number_of_stacks_per_sequence Nv 200

 num_unique_vx_vy 6

 Transition(1, lpc)

 to 1 = pa; a_add = 2/3; b_add = 1/3; n !n1 349984

 to 2 = 1-pa; a_add = 0; b_add = 0; n !n2 149781

 Transition(2, lpc)

 to 1 = 1-pa; a_add = 0; b_add = 0; n !n3 149781

 to 2 = pa; a_add = -2/3; b_add = -1/3; n !n4 350254

 }

The generated probability parameter pa can be determined using the n values as follows:

prm !pa_gen = (n1+n3)/(n1+n2+n3+n4); : 0.699974874

The fit to the DIFFaX data looks like:

1.3.4 Stacking faults from layers of different layer heights

Layers of different thicknesses can be modelled accurately and refinement fast. Here’s a fit to

simulated data (FIT-2.INP) for two different layer heights of 5 and 6Å.

Fit-1.INP, Fitting to DIFFaX test diamond data

2Th Degrees
14514013513012512011511010510095908580757065605550454035

L
n

(C
o

u
n
ts

)

2.6

2.5

2.4

2.3

2.2

2.1

2

1.9

1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1

22

1.3.5 Rietveld-Generated example

The files in the test_examples\stacking-faults\Rietveld-Generate\ directory can be used to create a

stacking faulted test pattern using Rietveld refinement. The test pattern can then be fitted to.

Create-Sequences.inp created the INP format stacking sequences and places the result int the file

strs-200-2000.txt. The file Rietveld-Generate.inp can then be used to create the test pattern

Rietveld-Generated-200-2000.xy. This test pattern can be fitted to using the file Fit-to-Rietveld-

Generated.INP; this file uses generate_stack_sequences. It demonstrates the accuracy and speed of

the stacking fault averaging fitting procedure. The fit to the Rietveld generated stacking faulted

pattern looks like:

1.3.6 Refining on layer heights

Layer heights can be refined by refining on parameters that are a function of the add_z or height

keywords. The Fit-3.INP example refines on 3 height parameters as well as the z fractional atomic

coordinates of the sites that comprise the layers. It also lists six types of transitions which operate on

three unique layer types. The transitions point to the layer types using the use_layer keyword. The c

lattice parameter is defined and refined using the following:

prm qq 0 c = Get(generated_c) + 0.0001 qq; : 1828.085117

Get(generated_c) is also used to initialize the z fractional coordinates of the sites as follows:

Fit-2.INP, Fitting to test data created with different layer heights

2Th Degrees
145140135130125120115110105100959085807570656055504540353025201510

S
q

rt
(C

o
u

n
ts

)

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

0

-5

Fit-to-Rietveld-Generated.INP

2Th Degrees
3938373635343332313029282726252423222120191817161514131211

S
q

rt
(C

o
u

n
ts

)

300

290

280

270

260

250

240

230

220

210

200

190

180

170

160

150

140

130

120

110

100

90

80

70

60

50

40

30

20

10

0

23

prm height_Se01 7.49691 prm !zSe01 = height_Se01/Get(generated_c);

site Se01 x 0.5 y 0 z = zSe01; occ Se 1 beq !bval 1 layer cd00

The fit to the test data looks like:

1.4 PDF refinement

PDF patterns are treated as an ‘xdd’. Many keywords used for xdds can also be used in PDF

refinement. PDF patterns can be refined simultaneously with other types of xdd patterns comprising

x-ray dependent or x-ray independent phases or peaks phases. Penalties, restraints and in particular

keywords such as rigid, atomic_interaction, sites_geometry, sites_distance etc… can all be used. Data

structure items frequently used in PDF refinement are:

xdd…

 pdf_data

 *[scale_phase_X E]…

 *[fit_obj]…

 [start_X #] [finish_X #]

 *[rebin_with_dx_of !E] [rebin_start_x_at !E]

 *[weighting !E]

 *[Tpdf_convolute]…

 str…

 *[scale_phase_X E]…

 [scale E]

 [view_structure]

 [rigid]…

 [occ_merge $sites]…

 [pdf_scale_simple]

 *[pdf_zero E]

 [pdf_ymin_on_ymax 0.001]

 [pdf_info]

 *[Tpdf_convolute]…

 [pdf_for_pairs $sites_1 $sites_2]…

 [pdf_only_eq_0]

 *[pdf_gauss_fwhm E]

Fit-3.INP, Refining on stacking vector and structural parameters

2Th Degrees
292827262524232221201918171615141312111098765432

S
q

rt
(C

o
u

n
ts

)

550

500

450

400

350

300

250

200

150

100

50

0

24

 *[Tpdf_convolute]…

where

Tpdf_convolute

 *[pdf_convolute E]…

 [min_X !E]

 [max_X !E]

 [convolute_X_recal !E]

Examples files in directory test_examples\pdf

beq-2.inp

beq-2-create.inp

beq-3.inp

beq-3-create.inp

pdf-1.inp

pdf-2.inp

alvo4\structure-solution-create.inp

alvo4\structure-solution.inp

alvo4\rigid.inp

occ-merge-pbso4\create.inp

occ-merge-pbso4\occ-merge-test.inp

occ-merge-pbso4\occ-merge.inp

Data files in directory test_examples\pdf

beq-2.xy

beq-3.xy

alvo4\alvo4.xy

occ-merge-pbso4\pbso4.xy

Keywords with ‘*’ next to them can be a function of the x-axis reserved parameter name X; for PDF

data X corresponds to r.

pdf_data tells the program that the data set is of G(r) type.

Let’s write G(r) as follows:

G(r) = s1 S(r) / r – s2 r

where

r corresponds to the X-axis

s1 and s2 are constants

S(r) are the pairs

pdf_scale_simple tells the program to calculate S(r)/(Np r) only.

pdf_ymin_on_ymax defines the minimum/maximum value for the Gaussians in regards to the x-axis

range calculated for the Gaussians; the default value of 0.001 in typically sufficient.

25

pdf_for_pairs can be used to select site pairs using the site name; for example:

pdf_for_pairs "V* Al* !O2" *

The ‘!’ character excludes the sequence from the wild card string. Multiple pdf_for_pairs can be

defined.

pdf_only_eq_0 informs the parent pdf_for_pairs that only equivalent position 0 is to be considered.

pdf_gauss_fwhm is used to write the width equation for the pairs selected by pdf_for_pairs. If all of

the pairs possible are described by pdf_for_pairs then the associated beq’s are not used and they

become redundant. The user is informed of unused beq’s. Consider the following abbreviated INP

segment:

site Al1 ... beq 1

site O1 ... beq 1

pdf_for_pairs Al1 Al1 pdf_only_eq_0 pdf_gauss_fwhm 0.1 ‘ Line A

pdf_for_pairs Al1 O1 pdf_only_eq_0 pdf_gauss_fwhm 0.2 ‘ Line B

pdf_for_pairs Al1 O1 pdf_gauss_fwhm 0.3 ‘ Line C

There are a number of types of interactions with FWHMs as follows:

Al1O1 interactions for equivalent position 0 described using Line B

Al1O1 interactions excluding equivalent position zero described using Line C

O1O1 interactions described using beq’s

pdf_info displays the interactions used in matrix form; for the above INP segment we get:

 pdf_info

{

- = No pdf_for_pairs defined hence beq's used

0 = pdf_for_pairs defined with pdf_only_eq_0

1 = pdf_for_pairs defined without pdf_only_eq_0

2 = two pdf_for_pairs defined, one with pdf_only_eq_0 and one without pdf_only_eq_0

 Al1 -2

 O1 2-

}

The matrix is shown in blue. pdf_for_pairs together with beq’s defaults offers great flexibility in

describing peak widths. See PDF-1.INP, PDF-2.INP, BEQ-3.INP.

scale_phase_X can be used to describe Gaussian dampening, for example:

prm damp_fwhm 50 min 1e-6 max 200

prm damp = Gauss(0, damp_fwhm);

scale_phase_X = damp;

26

1.4.1 Inter and Intra molecule FWHMs

Assigning different interaction types for molecules is done using pdf_for_pairs. For example, to set

the bond lengths for the atom Al1 of AlVO4 (see PDF-2.INP) to a different FWHM for equivalent

position 0 the following could be used:

prm intra_molec 0.01 min 1e-6

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

 pdf_gauss_fwhm = intra_molec;

The calculated pattern from PDF-2.INP therefore becomes:

Notice the 6 spikes; they correspond to the Al1 bonds which has narrow FWHMs. If we then

wanted Al1 bonds that are not equivalent position 0 to be different to the beq’s values then we

could use:

prm inter_molec 0.1 min 1e-6

prm intra_molec 0.01 min 1e-6

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0

 pdf_gauss_fwhm = intra_molec;

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6"

 pdf_gauss_fwhm = inter_molec;

This gives the following calculated pattern where we see the different bonds of Al1.

The corresponding output from pdf_info is:

pdf_info

{

Calculated G(r) with a molecule with narrow FWHMs

r

7654321

C
o

u
n

ts

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

-200

Calculated G(r) with a molecule with narrow FWHMs

r

7654321

C
o

u
n

ts

600

550

500

450

400

350

300

250

200

150

100

50

0

-50

-100

-150

-200

27

- = No pdf_for_pairs defined

0 = pdf_for_pairs defined with pdf_only_eq_0

1 = pdf_for_pairs defined without pdf_only_eq_0

2 = two pdf_for_pairs defined, one with pdf_only_eq_0 and one without pdf_only_eq_0

 Al1 ------222222------

 Al2 ------------------

 Al3 ------------------

 V1 ------------------

 V2 ------------------

 V3 ------------------

 O1 2-----------------

 O2 2-----------------

 O3 2-----------------

 O4 2-----------------

 O5 2-----------------

 O6 2-----------------

 O7 ------------------

 O8 ------------------

 O9 ------------------

 O10 ------------------

 O11 ------------------

 O12 ------------------

}

An exception is thrown if the same interaction is referenced in more than one pdf_for_pairs, for

example, the following will throw an exception as Al1O1 is references twice:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 …

pdf_for_pairs Al1 O1 pdf_only_eq_0 …

The following will not throw an exception:

pdf_for_pairs Al1 "O1 O2 O3 O4 O5 O6" pdf_only_eq_0 …

pdf_for_pairs Al1 O1 …

1.4.2 Instrument Sinc function Sinc-1.INP

In Sinc-1.PDF pdf_convolute is used at the xdd level to convolute a Sinc function into pdf type phases

as follows:

pdf_convolute = Sin(Qmax X+q3)/If(Abs(X)<0.5 Step_Size, If(X<0,-q2,q2), X);

 min_X = -conv_max;

 max_X = conv_max;

Sinc-1.INP also uses an xo_Is phase defined as:

xo_Is

 NoThDependence(0.0001)

 xo 10 I @ 100

 peak_type pv

28

 pv_lor 0.5

 pv_fwhm 2

pdf_convolute operates on pdf type phases only; hence the xo_Is phase is untouched. Note the

phase dependent use of an emission profile as defined in the NoThDependence macro. Multiple

pdf_convolute’s can be described at the global, xdd, str and pdf_for_pairs levels. Note, use of

pdf_convolute as a dependent of pdf_for_pairs is slower than at the other levels; thus where

possible use pdf_convolute at non-pdf_for_pairs levels.

1.4.3 Weighting of PDF and 2-Theta type data

PDF and 2-Theta data can be of very different intensities; the xdd_sum keyword can assist in

modifying the weighing of data in order to give the patterns approximately similar weights. For

example:

xdd file1.xy

 xdd_sum !sum1 = Abs(Yobs);

 weighting = 1/sum2;

xdd file2.xy

 xdd_sum !sum2 = Abs(Yobs);

 weighting = 1/sum2;

 pdf_data

1.4.4 Test_examples\pdf\BEQ-2.INP

Use Test_examples\pdf\BEQ-2-create.INP to generate a simulated pattern for BEQ-2.INP

BEQ-2.INP

- Comprise the structure of AlVO4

- 3 types of beq parameters

- beq is a function of X (ie. X corresponds to the X-axis which is r) and hence peak widths

are a function of X.

- demonstrates the use of pdf_zero

- demonstrates the use of rebin_with_dx_of and rebin_start_x_at

1.4.5 Test_examples\pdf\BEQ-3.INP

Use Test_examples\pdf\BEQ-3-create.INP to generate a simulated pattern for BEQ-3.INP

BEQ-3.INP

- Demonstrates the use of pdf_for_pairs

1.4.6 Speeding up refinement with rebin_with_dx_of

The step size in PDF data must be of equal size. Also, the start of the x-axis needs to be an integral

multiple of the step size. Increasing the step size in the data speeds up refinement; see BEQ-2.INP.

The step size can be increased using:

macro Rebin_Step { 0.015 }

rebin_with_dx_of Rebin_Step rebin_start_x_at Rebin_Step

29

Rebinning is akin to collecting the data at a larger step size. All data is included with counts after

rebinning being equal to counts before rebinning. esds associated with the data are also rebinned.

rebin_start_x_at can be used to place the start of the data at an integral multiple of the step size. In

BEQ-2.INP parameters such as scale are written in terms of the rebin step size to reflect the fact that

the scaling of the data is changed due to rebinning.

1.4.7 Refining on beq parameters

Modify the BB macro so that it comprises:

macro BB { } ' beq, Insert/remove !

Gives an Rwp plot of:

This type of convergence is indicative of derivatives being calculated correctly. Convergence for

coordinates, occupancies, lattice parameters and pdf_zero are similar.

1.4.8 Structure Solution, Simulated Annealing

test_examples\pdf\alvo4\structure-solution-create.inp creates a simulated pattern for structure-

solution.inp. It’s a simulated annealing refinement with all coordinates starting at zero with anti-

bump penalties applied using:

AI_Anti_Bump(O* , O* , 2.4, 1, 5)

AI_Anti_Bump(Al*, O* , 1.6, 1, 5)

AI_Anti_Bump(Al*, Al*, 2.8, 1, 5)

The correct solution is found as seen in the following:

10095908580757065605550454035302520151050

160

140

120

100

80

60

40

20

Launch Mode: C:\c\t5\test_examples\pdf\beq-2.inp

30

The range of convergence however for coordinates are smaller than with reciprocal space as in

normal Rietveld refinement. This is because the coordinates in the PDF case change peak positions

rather that peak intensities with the former having a narrow range of convergence. It may be

possible to increase the range of convergence for PDF by increasing the peak widths but this comes

at the expense of resolution and it may result in an even smaller range of convergence.

1.4.9 Rigid bodies with PDF data

test_examples\pdf\alvo4\rigid.inp operates on the simulated data created by structure-solution-

create.inp. It demonstrates the use of rigid bodies with PDF data.

1.4.10 Occupancy merging with PDF data

test_examples\pdf\occ-merge-PbSO4\occ-merge.inp operates on simulated data created by

create.inp. It demonstrates the use of occ_merge with PDF data.

1.4.11 Equivalence of pdf_gauss_fwhm and beq when there’s one atom type

test_examples\pdf\si1.inp comprises an option to use beq or pdf_gauss_fwhm as follows:

For the beq case we have:

beq = width;

and for pdf_gauss_fwhm we have:

pdf_gauss_fwhm = Sqrt(width 2 Ln(2) / Pi^2);

The above cases are equivalent when there’s one atom type.

31

2 NEW GUI FUNCTIONALITY

2.1 TOF x-axis can be displayed in d-spacing, Q and tof

The x-axis of TOF data can be displayed as either tof, d-spacing or Q by cycling the x-axis button:

2.2 Displaying many files at once

See files in the directory test_examples\3d\.

2.2.1 Surface plots – 2D with offsets

Scans can be displayed and offset from one another using the icon, for example:

The Quickzoom window is operational in all 2D-offset plots.

 13121110987

110

105

100

95

90

85

80

75

70

65

60

55

50

45

40

35

30

25

20

15

10

5

32

Pressing the Middle Mouse Button and moving the mouse changes the x and y offsets. This

movement greatly assists in determining the curvature of the surface. The QuickZoom display is not

offset allowing for two views of the same data.

2.2.2 Inserting peaks and identifying scans

Peak can be inserted by pressing the Ctrl-Key and clicking the RMB. When the Ctrl key is pressed a

solid circle is displayed on the scan closest to the mouse. The circle is coloured to match the scan

lines and in addition the closest scan is displayed with a thickened line. Displayed at the bottom of

the plot is the name of the scan as seen by the arrow below. Peaks as well as excluded regions move

with the offsets.

When the Ctrl-Key is pressed the x and y axis values displayed on the status line are offset to match

the closest scan. Similarly when “For LAM Cursor” option is selected the LAM cursor is changed to

match the axis of the closest scan.

2.2.3 2D-offset Surface plots

2D-offset plot can be displayed as a 3D-Surface, for example:

33

These plots can be manipulated in real time; the 871 file test_examples\je-para\d8_02999.raw with

over 4 million data points can be easily manipulated:

Pressing the Shift key whilst performing a Zoom (forming a box using the mouse) zooms into a

region. Zooming in this manner deselects scans for display. An unzoom is performed by performing

an Unzoom whilst holding down the Shift key. Colour schemes can be changed by using the Colours

options:

Contour-Orange-15 for looks like:

34

2.2.4 2D-offset Planview plots

Moving the y-offset such that it's at a maximum automatically produces a Planview; a Kaleidoscope
colour scheme gives:

The Standard colour scheme gives:

Zooming gives:

989694929088868482807876747270686664626058565452504846444240383634323028262422201816141210

2,700

2,600

2,500

2,400

2,300

2,200

2,100

2,000

1,900

1,800

1,700

1,600

1,500

1,400

1,300

1,200

1,100

1,000

900

800

700

600

500

400

300

200

100

35

Planview can also have x-axis offsets with line scans overlain:

These line scans can include the calculated and/or difference patterns as well as patterns for

individual phases. Beneath the displayed line scans are their shadows. Colours are blended across

scans as well as across the x-axis to sharpen images.

2.2.5 OpenGL Surface plots

OpenGL surface plots can be displayed alongside 2D-offset plots:

36

The scans displayed in the chart area are displayed to the right as a surface plot. Use RMB on the

surface plot for options; these are:

The OpenGL surface plot respects the 2D x-axis and y-axis display options. It is also aware of the

QuickZoom window and scrolling. Scrolling can be performed from either the 2D or 3D displays using

the Mouse Wheel. Navigation in the OpenGL window is as follows:

 Use the Moise Wheel to scroll the x-axis from either the 2D or 3D plots.

 RMB-Pressed and moving zooms

 Pressing ‘x’ whilst rotating allows rotation around an axis vertical to the screen.

 Pressing ‘y’ whilst rotating allows rotation around an axis horizontal to the screen.

 Pressing ‘z’ whilst rotating allows rotation around an axis perpendicular to the screen.

 Pressing the Mouse Wheel button (as opposed to rotating the mouse wheel) moves the object

and hence the centre of rotation.

 When the Mouse is close to the Left or Right borders of the OpenGL window then rotation is

around an axis perpendicular to the computer screen. Very useful for positioning 3D objects.

Opening the OpenGL Text Dialog and clicking on the 3D surface writes text into the Text Dialog; this

text comprises the names of the two files bordering the polygon that has been clicked and the

average x and y values of the polygon, for example:

2.2.6 OpenGL – Weighted difference for colours

The RMB “Weight difference for colours” option displays colours corresponding to the

WtDiff = Abs(Yobs-Ycalc) / Weighting

37

2.3 Normalizing scans to the maximum scan value wiithin a Scan Window

Displayed scans can be normalized using the option “Yobs Normalize” which is activated using the

RMB on the Scan window. Normalizing scales displayed scans such that the maximum values of the

displayed data are all equal. Normalizing is temporary and can be toggled on/off by executing the

“Yobs Normalize”. The following shows scans normalized with all the peaks on the right having the

same height.

References

Treacy, M. M. J.; Newsam, J. M.; Deem, M. W. (1991) Proceedings of the Royal Society-Mathematical

and Physical Sciences, 433, 499.

	1 New kernel functionality
	1.1 Introducion
	1.2 Miscellaneous
	1.2.1 TC-INPS.BAT and the aac$ macro
	1.2.2 TOPAS is now 64 bit
	1.2.2.1 Limiting Memory Usage – MaxMem.TXT

	1.2.3 Indexing - Figure of merit
	1.2.3.1 Extinction subgroup determination

	1.2.4 INP file enhancements Miscellaneous
	1.2.4.1 The num_runs keyword and Preprocessor improvements
	1.2.4.2 Reserved macro Names
	1.2.4.3 The #list directive – creating arrays of macros
	1.2.4.4 The File_Variable and File_Variables macro
	1.2.4.5 Equation String, Concat and Variable_Name_From_String functions
	1.2.4.6 dummy and dummy_prm keywords

	1.2.5 out_dependences and out_dependences_for
	1.2.6 The peaks buffer, speed and memory considerations
	1.2.7 Threading
	1.2.7.1 Setting the maximum number of threads - MaxNumThreads.TXT

	1.2.8 Using local to assist in using “for … {}” loops
	1.2.9 Charge Flipping and neutron_data
	1.2.9.1 Powder data, the A matrix and the Tangent formula

	1.2.10 Error determination using SVD
	1.2.11 Error Propagation using prm_with_error
	1.2.12 New Keywords
	1.2.13 New Functions

	1.3 Stacking faults
	1.3.1 Generating the same stacking sequences each run
	1.3.2 The SF_Smooth macro
	1.3.3 Fitting to DIFFaX test diamond data
	1.3.4 Stacking faults from layers of different layer heights
	1.3.5 Rietveld-Generated example
	1.3.6 Refining on layer heights

	1.4 PDF refinement
	1.4.1 Inter and Intra molecule FWHMs
	1.4.2 Instrument Sinc function Sinc-1.INP
	1.4.3 Weighting of PDF and 2-Theta type data
	1.4.4 Test_examples\pdf\BEQ-2.INP
	1.4.5 Test_examples\pdf\BEQ-3.INP
	1.4.6 Speeding up refinement with rebin_with_dx_of
	1.4.7 Refining on beq parameters
	1.4.8 Structure Solution, Simulated Annealing
	1.4.9 Rigid bodies with PDF data
	1.4.10 Occupancy merging with PDF data
	1.4.11 Equivalence of pdf_gauss_fwhm and beq when there’s one atom type

	2 New GUI functionality
	2.1 TOF x-axis can be displayed in d-spacing, Q and tof
	2.2 Displaying many files at once
	2.2.1 Surface plots – 2D with offsets
	2.2.2 Inserting peaks and identifying scans
	2.2.3 2D-offset Surface plots
	2.2.4 2D-offset Planview plots
	2.2.5 OpenGL Surface plots
	2.2.6 OpenGL – Weighted difference for colours

	2.3 Normalizing scans to the maximum scan value wiithin a Scan Window

