

Alan A Coelho www.topas-academic.net

Bruker–AXS www.bruker-axs.de

September 7, 2020

Ab initio solution of proteins at atomic resolution, Fast simultaneous

refinement of 1000s of data sets, Amazon EC2 cloud computing, PDF

Generation, Deconvolution, Capillary aberration, LP-Search, Sine

Transform, DPI awareness.

http://www.topas-academic.net/
http://www.bruker-axs.de/

Unseen improvements 1

1 Unseen improvements

 UNSEEN IMPROVEMENTS ... 3

1.1 REFERENCING .. 3

 AMAZON EC2 CLOUD COMPUTING – TC-CLOUD .. 4

2.1 OPERATION .. 4
2.2 PRE-REQUISITES ... 5
2.3 PRICING OF AWS CLOUD RESOURCES ... 5
2.4 AWS DASHBOARD AND OPERATING TC-CLOUD .. 6
2.5 INSTALLING AWS CLI ON THE LOCAL COMPUTER .. 6
2.6 OPERATING TC-CLOUD FROM TOPAS (GUI) .. 7
2.7 TERMINATING/STOPPING TC-VMS AND TC-MON.A.. 9
2.8 POWERING OFF TC-VMS AFTER 100 MINUTES OF INACTIVITY ... 10
2.9 RETRIEVING THE INP OR FC FILE THAT GAVE THE BEST GOF ... 10
2.10 MONITORING, TC-CLOUD IS INDEPENDENT OF THE LOCAL COMPUTER ...11
2.11 RANDOM NUMBER GENERATOR AUTOMATICALLY SEEDED ..11
2.12 CLOUD__ #DEFINE AND GET(CLOUD_RUN_NUMBER) ..11
2.13 ‘SETUP CLOUD’ DETAILS .. 12
2.14 ‘VIRTUAL MACHINES’ TAB OPTIONS .. 13
2.15 CREATING TC-VMS – SPOT INSTANCES ... 14
2.16 CHOOSING THE OPTIMUM VM TYPE .. 15
2.17 UNABLE TO CONNECT TO TC-VMS AFTER LOCAL COMPUTER RESTART 16

 PROTEIN REFINEMENT ... 17

3.1 READING PROTEIN DATA BANK (PDB) CIF FILES ... 17
3.2 PROTEIN REFINEMENT, 6Y84, SARS-COV-2 MAIN PROTEASE ... 18

 SOLVING PROTEINS AT ATOMIC RESOLUTION .. 20

4.1 AB INITIO SOLUTION OF TRICLINIC 4LZT ... 23
4.2 SOLUTION OF NON-TRICLINIC LATTICES USING A KNOWN ATOMIC POSITION 24
4.3 AB INITIO SOLUTION OF 5DA6 IN SPACE GROUP R32 .. 26

 FAST SIMULTANEOUS REFINEMENT OF 1000S OF PATTERNS ... 27

5.1 EXAMPLE REFINEMENT OF 1000S OF PATTERNS ... 28

 DECONVOLUTION .. 31

6.1 DECONVOLUTION – SIMULATED PATTERN .. 33

 PDF-GENERATION, GENERATING THE PAIR DISTRIBUTION FUNCTION 36

7.1 PDF-GENERATING - LIFEPO4 .. 36
1.1.1 Operation 0 – Fitting peaks to the diffraction pattern .. 39

1.1.2 Operation 1 – Generation G(r) from the fitted peaks .. 40

1.1.3 Correcting the PDF due to a zero error in reciprocal space 42

1.1.4 Generating F(Q) from G(r) - gr_to_fq ... 43

7.2 PDF-GENERATING - FULLERENE ... 44
7.3 LEVENBERG-MARQUARDT CONSTANT DETERMINATION .. 46

 MISCELLANEOUS .. 47

8.1 CAPILLARY CONVOLUTION FOR A FOCUSING CONVERGENT BEAM .. 47
8.2 LP-SEARCH - THREADED, FASTER AND MORE EXHAUSTIVE ... 47
8.3 SINE AND COSINE TRANSFORMS ... 48
8.4 *.SST DATA FILES ... 48
8.5 XDD_ARRAY AND NESTED XDD_SUM .. 49
8.6 STRING_TO_VARIABLE AND DOUBLE_TO_STRING FUNCTIONS ... 50

Unseen improvements 2

2 Unseen improvements

8.7 RESTRAINING BACKGROUND USING THE BKG_AT FUNCTION .. 50
8.8 PHASE_OUT_X ... 50
8.9 FUNCTIONS ALLOWING ACCESS TO RIGID-BODY FRACTIONAL ATOMIC COORDINATES 51
8.10 SET_TOP_PEAK_AREA .. 51
8.11 BRING_NTH_PEAK_TO_TOP .. 52
8.12 SCALE_OCC KEYWORD ... 52
8.13 P1_FRACTIONAL_TO_FILE .. 53
8.14 DETERMINING THE ORIENTATION OF A KNOWN FRAGMENT USING A RIGID-BODY 53
8.15 USER_DEFINED_STARTING_TRANSITION ... 53
8.16 USING A USER DEFINED TABLE TO INPUT F0 VALUES VIA USER_Y ... 53
8.17 EXTENDING USER_Y .. 54
8.18 NEW KEYWORDS ... 56
8.19 NEW FUNCTIONS ... 57

 NEW GUI FUNCTIONALITY .. 58

9.1 TOPAS IS DPI AWARE ... 58
9.2 ANTIALIASING AND OPENGL ... 58
9.3 DISPLAYING A PHASE WITH AND WITHOUT BACKGROUND .. 59
9.4 HOW ATOMS ARE DISPLAYED IN OPENGL ... 59
9.5 X_CALCULATION_STEP DELETED WHEN CONSTANT X-AXIS STEP SIZE DETECTED 59
9.6 HIDE_PEAK_STICKS ... 59

 REFERENCES .. 60

Unseen improvements 3

3 Unseen improvements

 ... UNSEEN IMPROVEMENTS

Many improvements are unseen; some of these include:

• Improvements to Marqaurdt constant determination.

• Improvements to the conjugate gradient solution rotuine.

• Improvements to the BFGS method.

• More speed improvements.

•

1.1 Referencing

• Coelho, A. A. (2018). J. Appl. Cryst. 51, https://doi.org/10.1107/S1600576717017988, "TOPAS &
TOPAS-Academic: An optimization program integrating computer algebra and crystallo-
graphic objects written in c++"

https://doi.org/10.1107/S1600576717017988

Amazon EC2 cloud computing – TC-Cloud 4

4 Amazon EC2 cloud computing – TC-Cloud

 ... AMAZON EC2 CLOUD COMPUTING – TC-CLOUD

A cloud version of TOPAS can be run on multiple virtual computers on the Amazon Web Services
(AWS) cloud platform. The process is seamlessly driven from the GUI version of TOPAS/TOPAS-
Academic where launching an INP file on the cloud is a few mouse-clicks away. This gives users
access to large computing resources where 1000s of virtual machines (VMs) can be utilized in a
relatively inexpensive manner. Large simulated annealing problems taking weeks on a laptop can
now be done in minutes. The process typically involves working interactively with TOPAS in
Launch mode and performing initial preliminary refinements. Once the user is satisfied, the cloud
version of the kernel, which we will call TC-Cloud, can be launched. Cloud operation is often per-
formed in an interactive manner due to the speed of analysis; many Cloud runs need only last for
10 to 20 minutes depending on the number of VMs used.

The user does not install TC-Cloud; instead TC-Cloud is pre-installed on a Virtual Machine image
called an Amazon Machine Image (AMI). The AMI for TC-Cloud is called TC-AMI. TC-AMI can be
used to create many virtual machines each corresponding to a virtual Linux computer; we will call
these TC-VMs. Each TC-VM can run multiple instances of TC-Cloud. To summarize:

• TA.EXE is the GUI version of TOPAS running on a local computer.

• TC-Cloud is the cloud version of TOPAS running on a VM.

• TC-AMI is an image of a VM with TC-Cloud installed.

• TC-VM is a VM created from TC-AMI.

• Many TC-VMs (500 for example) can be created/deleted at once.

The user is given a choice of VM type when launching TC-AMI to create TC-VMs. A large TC-VM
can run more than one instance of TC-Cloud.

2.1 Operation

TC-Cloud operates in a similar but not identical manner to TC.EXE. Importantly INP files are pre-
processed before launching on the cloud; this ensures the use of local files such as TOPAS.INC and
other #include files. Since the local TOPAS.INC is used then local emission profiles are used. Data
files referenced in the INP file must reside in the same local directory as the INP file. This is normal
practise and INP files should therefore not contain file paths. For example,

• this is valid on the cloud: xdd data.xy

• this is not valid on the cloud: xdd data\data.xy

File names on Linux are case sensitive. It is therefore important to use the correct case when
referring to file names within INP files. The following keywords can be included in INP files but
have been disabled:

append_bond_lengths
atom_out
A_matrix
A_matrix_normalized
bootstrap_errors
C_matrix

do_errors_include_penalties
do_errors_include_restraints
index
num_runs
out
out_file

out_prm_vals_per_iteration
phase_out
phase_out_X
process_times
system_after_save_OUT
system_before_save_OUT

Amazon EC2 cloud computing – TC-Cloud 5

5 Amazon EC2 cloud computing – TC-Cloud

C_matrix_normalized
do_errors

out_prm_vals_dependents_filter
out_prm_vals_filter
out_prm_vals_on_convergence

verbose
view_structure
xdd_out

Many of these output data and as such are better left to the local computer.

2.2 Pre-requisites

Signing up with Amazon AWS is required, see https://aws.amazon.com/. Also, necessary is
TOPAS/TOPAS-Academic and a local computer to run TOPAS. TC-AMI comes with TOPAS/Aca-
demic Version 7; access to TC-AMI can be obtained from Alan Coelho. TC-VMs are monitored and
terminated depending on user defined conditions. For example, VMs can be terminated when the
best goodness of fit parameter (GOF) from all TC-VMs drop below a user defined value. This re-
duces running times for the TC-VMs and consequently running costs. The following points are
important:

• Signing up with AWS does not incur a fee.

• Using non-free AWS resources do incur AWS fees.

• The user is responsible for all AWS costs.

• AWS fees can be reduced by reducing the use of AWS services.

• VMs created as spot instances are often 60 to 70% cheaper.

• Services can be reduced by:

• Turning off unused VMs.

• Deleting unused VMs.

2.3 Pricing of AWS cloud resources

The following approximate pricing information are dependent on AWS and could change. Running
TOPAS on AWS requires the use of VMs. Each VM in turn uses an EBS volume (a storage device).
Use of both the VM and the EBS incur AWS fees, see:

For VMs: https://aws.amazon.com/ec2/pricing/on-demand/

For EBS volumes: https://aws.amazon.com/ebs/pricing/

Limited usage of a single core VM on Amazon AWS are free of charge for a period of one year.
Large VMs (ones with many cores) are not free and charges are dependent on time usage. Pricing
is on a per second basis for Linux VMs; the twin core VM c5.large is recommended for routine TC-
Cloud usage; for the same core count, it is equivalent to an average high end laptop in computa-
tional speed and is priced at approximately ~0.034 cents USD (for spot instances) per hour. One
hundred of these running for one hour will cost approximately $3.40 USD. Large saving, often up
to 70%, can be realized by requesting spot-instances, see https://aws.ama-
zon.com/ec2/spot/pricing/. The author has had no trouble getting regular access to 500 spot
instances.

Each TV-VM is a Linux VM; it comes with an 8 Gbyte EBS volume which stores TC-Cloud and the
operating system. EBS volumes are relatively inexpensive at 0.125 USD per Gbyte per month, or

https://aws.amazon.com/
https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ebs/pricing/
https://aws.amazon.com/ec2/spot/pricing/
https://aws.amazon.com/ec2/spot/pricing/

Amazon EC2 cloud computing – TC-Cloud 6

6 Amazon EC2 cloud computing – TC-Cloud

$1 USD per month for each TC-VM. For one hundred VMs this small charge becomes $100 USD per
month. It is therefore recommended that VMs are deleted after use to reduce costs. Creating and
starting VMs takes one to two minutes.

Cloud storage is required in addition to VMs and associated EBS volumes. This storage is used to
transfer data from the local computer to the VMs and visa-versa. AWS S3 cloud storage is used;
its inexpensive at approximately $0.02 per Gbyte per month, see https://aws.ama-
zon.com/s3/pricing/. File manipulation of S3 storage is provided. Running TC-Cloud typically re-
quires a fraction of a Gbyte in S3 storage and hence common storage costs are negligible.

2.4 AWS dashboard and operating TC-Cloud

AWS includes a comprehensive browser dashboard called EC2 Dashboard https://ap-southeast-
2.console.aws.amazon.com/ec2/. In the case of running TC-Cloud, the dashboard is primarily
used to create TC-VMs from TC-AMI as well as deleting files created on the S3 cloud storage. The
rest of TC-Cloud operations are performed from TA.EXE. The important parts of EC2 Dashboard
are circled in the following:

Note: AWS web screens may change due to improvements etc…; the general operation however
should remain the same. Clicking on the Account (circled on the top) brings up account options
which includes real time billing information (AWS cloud costs). Also, on the top is the AWS region
being operated on. AWS operates on a regional basis; regions chosen should be in close geo-
graphical proximity to the local computer. This reduces response times and data transfer costs.
TC-VMs are created by clicking on AMIs. Once created, details of TC-VMs for the selected region
can be viewed by clicking on Instances. AWS limits the number of VMs available to 20 on most VM
types; request for increasing this number can be made from the circled ‘Limits’ item. The author
had no trouble getting regular access to 500 spot instance VMs.

2.5 Installing AWS CLI on the local computer

For communicating with the TC- VMs; the local computer requires the installation of AWS Com-
mand Line Interface (CLI). The CLI can be trivially installed and downloaded from:

https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html.

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/s3/pricing/
https://ap-southeast-2.console.aws.amazon.com/ec2/
https://ap-southeast-2.console.aws.amazon.com/ec2/
https://docs.aws.amazon.com/cli/latest/userguide/install-windows.html

Amazon EC2 cloud computing – TC-Cloud 7

7 Amazon EC2 cloud computing – TC-Cloud

2.6 Operating TC-Cloud from TOPAS (GUI)

After the preliminary setting up and testing of an INP file with TA.EXE on the local computer, the
INP file can be fed to AWS for parallel operation on many VMs. Summing up the process we have:

1) Set up INP file and ensure it runs as expected on TA.EXE on the local computer.

2) Create a small number of VMs (3 for example) and ensure that the INP file runs as expected on
the VMs.

3) Create many more VMs (user determined) and run the INP file on the VMs.

Stage-1 is normal TOPAS operation. Stage-2 involves creating a job (*.CLD files) from the ‘Setup
Cloud’ tab in the GUI. Before creating a job its best to create a template that can be used for all
jobs in the AWS region. Enter your ‘Key pair file’, the AWS Region being used and your S3 bucket
name details in the Setup Cloud tab; it should look something like:

Save the details using ‘Save-As CLD setup file’ to a file. Load this file when creating other CLD
files. To run a job then enter the rest of the setup details; an example is:

Amazon EC2 cloud computing – TC-Cloud 8

8 Amazon EC2 cloud computing – TC-Cloud

The highlighted lines require input to create a job. This input comprises the INP file to be run on
the Cloud as well as the necessary data files. In the above example the INP file is placed in the S3
job directory called 2wfi-1 and the data file is placed in the S3 directory called 2wfi. S3 will there-
fore contain the following two directories:

s3://aacbucket1/swfi-1

s3://aacbucket1/swfi

The INP file as well as other communication files are copied to the job directory, 2wfi-1 in this
case. The name of the INP file on S3 is changed to in.inp; in.inp is used in the retrieval of out from
the VMs; it is unchanged during Cloud operation and it can be also viewed as a backup for the job.
Each run on the Cloud requires a unique job name; an exception is thrown otherwise. Many jobs
however, can use the same S3 data directory. In cases where many jobs are run sequentially, each
using the same data files, then the ‘Copy data to S3’ option can be set to No after the first job; this
speeds up processing as copying large data files over the internet can be slow. CLD files contain
information necessary for launching the INP file on the cloud. Once the information is entered, it
becomes possible to view the created VMs in the ‘Virtual Machines’ tab, or:

Amazon EC2 cloud computing – TC-Cloud 9

9 Amazon EC2 cloud computing – TC-Cloud

Data can be displayed in sorted order by double clicking on column headings. To launch the INP
file on a VM then select the VM and click ‘Run TC on selected VMs’. To select all VMs then click on
the empty rectangle circled. Only VMs with an ok Status can be launched. If a selected VM is start-
ing or pending then Status will not be ok. The number of TCs running on each VM (typically one) is
shown in the # TCs column. This data as well as other VM details maybe out-of-date; to show the
latest then click on the Refresh option. The iters column shows the total number of refinement
iterations executed on the respective VM; this number supplies a means of determining if a VM is
running in an expected manner. For example, if iters has stopped increasing in an expected man-
ner and #TCs is not zero then the running TCs have stopped operating in an expected manner.

Due to the speed of analysis, Cloud operation is often performed interactively. Running many jobs
to investigate a problem, each taking 10 to 20 minutes and comprising 500 VMs, is common. Each
job creates a directory on S3 which can be deleted after use using the AWS S3 dash-board; it
looks like:

2.7 Terminating/Stopping TC-VMs and tc-mon.a

Terminating or stopping TC-VMs reduces AWS fees. TC-VMs can be automatically stopped or ter-
minated depending on ’End conditions’, or:

These conditions are uploaded to the VMs when a job is launched. On launching a job, a small mon-
itoring program, called tc-mon.a, is started on each VM. This monitoring program reads the End
conditions and monitors the running TCs. VMs are in turn terminated/stopped depending on the
End conditions. From the local machine, the end conditions can also be uploaded after a job has

Amazon EC2 cloud computing – TC-Cloud 10

10 Amazon EC2 cloud computing – TC-Cloud

started using the ‘Upload to selected VMs’ option. This option has no effect on VMs with a Status
that is not ok. The ‘Refresh’ option displays values as found on common storage for the job indi-
cated in ‘Setup cloud’ tab.

TCs running on VMs are terminated when the number or iters, as defined in the INP file, has been
reached, or, when the CPU time allocated ‘Max time (s)‘ has been reached or when the overall best
GOF falls below ’GOF Target’. When there are no TCs running on a VM then the VM is stopped if ‘Off
on End’=1; subsequently if ‘Del on end’=1 then the VM itself is terminated (deleted). Parameters for
a typical job left unattended would be:

Max time (s) = 10 60 60 = 10 hrs of running

GOF Target = 10, Off_on_End = 1, Del_on_end = 1

For interactive use, the user can manually terminate TCs and VMs; the termination parameters
could therefore look something like:

Max time (s) = 0

GOF_Target = 10, Off_on_End = 0, Del_on_end = 0

A ‘Max time (s)’ of zero (the default) disables the ending of TCs on a time basis. ‘Max time (s)’ on
VMs can be entered as an equation by starting the equation with an equal sign. For example,
‘= 24 60 60’ could be used to enter 24hrs.

2.8 Powering off TC-VMs after 100 minutes of inactivity

In addition to the terminating/stopping criteria of section 2.7, VMs are automatically powered off
(stopped but not terminated) after 100 minutes of TC-Cloud inactivity including inactivity on VM
start-up. The net effect is that VMs are stopped after 100 minutes of TC-cloud not being run. Sit-
uations where 100 minutes of inactivity is possible include internet-down situations as well as
users forgetting to power-off or terminate VMs. For example, the fee incurred for forgetting to
turn off 100 spot instance VMs would be ~3.40 USD. Typical usage comprises turning on 500 VMs
and running many jobs interactively to analyse data. The VMs are not turned off during the running
of these jobs.

2.9 Retrieving the INP or FC file that gave the best GOF

Output from a job, corresponding to the best INP for Rietveld refinement, or, the best structure
factors for charge-flipping, is stored on the S3 job directory. This storage to S3 from a job is in-
dependent of the local computer. The ‘Get best overall’ downloads the output to a local directory
from where INP file originated. The name given to the output is Job-Name.INP for Rietveld refine-
ment or Job-Name.FC for charge-flipping. For example, for a job named ‘PbSO4-1’ and an input
file with a path of C:\DATA\PBSO4.INP we get:

‘INP File for cloud’ = C:\DATA\PBSO4.INP

 ‘Get best overall’ places output in C:\DATA\PBSO4 -1.INP

Once retrieved, the best INP file can be run on the local computer; in other words, the best fit
from the cloud can be visually inspected with a few mouse clicks. If the VMs are available and not

Amazon EC2 cloud computing – TC-Cloud 11

11 Amazon EC2 cloud computing – TC-Cloud

stopped or terminated, then output from the individual VMs can be retrieved using the ‘Get best
for selected’ option; output is placed in the local computer in an identical to that described for
‘Get best overall’. Typical interactive operation therefore comprise viewing and partially running
intermediate cloud results and making decisions based on those results.

2.10 Monitoring, TC-Cloud is independent of the local computer

The running of VMs can be monitored by the local computer using the ‘Monitoring is On/Off’ option.
When On, the best overall GOF is displayed in the text output of the ‘Fit Dialog’ window at time
intervals as defined in ‘Monitoring time interval’ option of ‘Setup cloud’ tab. Whilst jobs are running,
the local computer can be used to run refinements independent of any running jobs. Jobs can be
started on a laptop, left running overnight and the results viewed the next day.

2.11 Random number generator automatically seeded

The random number generator for both TC-Cloud (and TC.EXE on the local computer) is seeded
such that the sequence of random numbers generated for any run is unique. Identical sequences
can be generated by using the seed keyword with an integer (corresponding to a seed number)
placed after it.

2.12 CLOUD__ #define and Get(cloud_run_number)

The pre-processor directive of ‘#define CLOUD__’ is automatically included at the start of INP
files running on VMs. This allows blocks of INP script to be conditionally included/excluded from
cloud runs making it easy to run the same INP file in both the cloud and on the local computer. For
example, the following is useful in the case of charge-flipping:

charge_flipping
#ifdef CLOUD__

randomize_initial_phases_by = Rand(-180, 180);
#else

set_initial_phases_to job-name.fc
#endif

Here the state of the best FC file found on the VMs can be determined by first executing the ‘Get
best overall’ option and then locally running the INP file. Also, available is Get(cloud_run_number)
which returns the run number assigned to the corresponding VM with counting starting at 0.
Get(cloud_run_number) returns -1 when running on the local computer. Example usage in terms
of stacking faults could be:

macro & pa { Get(cloud_run_number+1)/102 }
generate_stack_sequences {

number_of_sequences 200
number_of_stacks_per_sequence 200
Transition(1, lpc)

to 1 = pa; a_add = 2/3; b_add = 1/3;
to 2 = 1-pa; a_add = 0; b_add = 0;

Transition(2, lpc)
to 1 = 1-pa; a_add = 0; b_add = 0;
to 2 = pa; a_add = -2/3; b_add = -1/3;

Amazon EC2 cloud computing – TC-Cloud 12

12 Amazon EC2 cloud computing – TC-Cloud

}

2.13 ‘Setup Cloud’ details

Cloud setup file

Name of file containing cloud details for a job.

Key pair file

Name of file containing encrypted login information, see:

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html

This file needs to be read/write protected so that only one user can access; use Windows
Explorer and Right-Click on the file to change its properties.

Region

Geographical region where VMs reside.

S3 Bucket

The name of the bucket for transferring data to and from the TC-VMs. Buckets are created
and manipulated at https://s3.console.aws.amazon.com/s3/. By default, s3 buckets are pri-
vate to the user. Once a bucket is created, directories within the bucket corresponding to the
job name are automatically created on launching the TC-VMs. For example, for a job named
job-1 and a bucket called my-bucket then the following directory on s3 is created:

s3://my-bucket/job-1

my-bucket are used for many jobs. Information stored on common storage are not deleted by
TA.EXE running on the local computer; the user is therefore responsible for cleaning up un-
wanted files using the AWS S3 dash-board.

Job Name

Name of job. Job names cannot contain spaces.

S3 data directory

S3 directory where data files are stored for a job. More than one job can use a S3 data direc-
tory.

INP file for cloud

Input file to run on the cloud. The INP file can make use of the predefined pre-processor di-
rective called CLOUD__. It can also make use of Get(cloud_run_number).

Number TCs per VM

Typically set to 1. The number of TC-Cloud instances to run on each TC-VM. The number of
TCs per VM should not exceed the number of Cores as seen in Cores column of the Virtual

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html
https://s3.console.aws.amazon.com/s3/

Amazon EC2 cloud computing – TC-Cloud 13

13 Amazon EC2 cloud computing – TC-Cloud

Machines tab. For example, the VM type of c5.18xlarge has 36 Cores each with 2 threads (intel
hyper threading). The number of TCs therefore should not exceed 36. Information on EC2 in-
stance types can be found at https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/in-
stance-optimize-cpu.html.

Max threads per TC

Typically set to 2 for c5.large VMs. The maximum number threads each TC can use. If zero,
then each VM will be allowed to use the maximum number or threads. For VMs with more than
one TC running then the maximum number threads should be set to:

Max_threads_per_TC = (Virtual Cores) / Number_TCs_per_VM

Monitoring time interval (s)

The time interval used when ‘Monitoring is On’.

2.14 ‘Virtual Machines’ tab options

Refresh

Refreshes VMs details corresponding to the region defined in the ‘Setup cloud’ tab.

Run TC on selected VMs

Launches TC-Cloud on selected VMs.

Get best overall

Gets and processes the best output from common storage for the job defined in Setup cloud
and places the result in the directory where the original INP file came from. For Rietveld re-
finement the retrieved output is placed in a file called job-name.INP. For charge-clipping, the
retrieved output (structure factors) is placed in a file called job-name.FC. Files placed in com-
mon storage persists and are therefore available even after the job’s VMs are deleted.

Get best for selected

Gets and processes the best output from a selected VM and places the result in the directory
of the original INP file. The selected VM must be On. For Rietveld refinement the retrieved
output is placed in a file called job-name.INP. For charge-clipping, the retrieved output (struc-
ture factors) is placed in a file called job-name.FC.

End TC on selected VMs

Stops any TC-Clouds running on selected VMs. On termination of the TCs, the VMs are turned
off if their corresponding Off_on_End=1; in turn VMs are terminated if their corresponding
Del_on_End=1.

Monitoring is On/Off

Starts/Stops monitoring. When monitoring is On, the best GOF as found by the TC-VMs for the
job defined in ‘Setup cloud’ is displayed in the Fit Dialog.

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-optimize-cpu.html

Amazon EC2 cloud computing – TC-Cloud 14

14 Amazon EC2 cloud computing – TC-Cloud

Turn On selected VMs

Turns selected VMs On.

Turn Off selected VMs

Turns selected VMs Off.

Console for selected VMs

Log-in to the selected VMs creating terminal windows for each. Can be useful for trouble
shooting.

2.15 Creating TC-VMs – Spot Instances

TC-VMs are created from the EC2 dashboard. To create 200 VMs, for example, click on the AMIs
option and then click on the TC-AMI-n AMI. n corresponds to the latest TC-AMI version. Then click
on Launch to bring up ‘Choose an Instance Type’ screen. Choose an appropriate VM type; for re-
finements that require less than 4Gbytes of memory then choose c5.large. The amount of
memory required for each TC can be determined by first running the INP file on the local machine
and viewing the Windows Task Manager. Once the VM type is chosen, proceed to the next screen
‘Configure Instance Details’:

Set ‘Number of instances’ to 200 and set the ‘IAM role’ to ‘ecsInstanceRole’. Select ‘Request Spot
instances’. Spot instances are often 60 to 70% cheaper; the user is informed when spot instances

Amazon EC2 cloud computing – TC-Cloud 15

15 Amazon EC2 cloud computing – TC-Cloud

are unavailable; the author has had no difficulty obtaining 500 spot instances on a regular basis.
Proceed to the ‘Configure Security Group’ screen’ and set the Source to ‘My IP’; ie.

Click on ‘Review and Launch’ to Launch the creation of the TC-VMs. Creation should take one to
two minutes. Use the TA Refresh option of ‘Virtual Machines’ to see the status of VMs; VMs with a
Status of ok are ready to run. Once all the VMs are created, the ‘Run TCs on selected VMs’ option
from the Virtual Machines tab can be used to launch the job on the selected VMs.

2.16 Choosing the optimum VM type

The most appropriate VM for TOPAS type problems are c5.large where memory usage is less than
4 Gbytes. However, a problem that uses 20 Gbytes of memory would need a larger VM. The prob-
lem could be a large charge flipping problem or indeed a large Rietveld refinement simulated an-
nealing problem with 1000s of parameters. Memory usage prior to launching on the Cloud can be
determined using the local computer. The VM type chosen should therefore be one than has more
memory and the maximum memory usage seen on the local computer. Only c* types (compute
types) VMs should be chosen (see https://aws.amazon.com/ec2/pricing/on-demand/). For a
problem that use 20 Gbytes of memory, the c5.4xlarge is the smallest VM that will do the job. Max
Number of threads should be set to zero allowing the maximum number of threads to be used
which in this case is probably 16.

Note, TOPAS is threaded to a large extent, however, an excessive number of threads could slow
down operation. For example, the large VM type of c5.18xlarge operating on the TEST_EXAM-

PLE\SINGLE-CRYSTAL\PN_O2_2-ADPS.INP (3970 parameters) produces the following as a function
of number of threads:

https://aws.amazon.com/ec2/pricing/on-demand/

Amazon EC2 cloud computing – TC-Cloud 16

16 Amazon EC2 cloud computing – TC-Cloud

of
Threads

approximate_A - 15 iterations Full A matrix - one iteration
Time(s) Gain Time(s) Gain

2 42.19 0.32
4 22.28 0.60 186.98 0.36

8 8.41 1.59 61.93 1.09

16 4.11 3.25 31.65 2.12

32 2.77 4.82 17.92 3.75

48 2.89 4.62 15.18 4.43

64 2.95 4.53 13.71 4.91

70 3.06 4.37 13.73 4.90

The columns marked Gain are the times taken on a high-end laptop with 8 threads divided by the
time taken on c5.18xlarge. The speedup due to number-of-threads is substantial up to about 32
threads. It is worth noting that TOPAS V7 for the approximate_A case is 1.9 times faster than V6.

2.17 Unable to connect to TC-VMs after local computer restart

The IP address of the local computer may change when the local computer is powered off and
restarted, or, when the connection to the internet changes. VMs created prior to the restart
would therefore have an invalid local-computer-IP-address; communication with the VMs would
therefore not be possible. This scenario is noticed when the Refresh or ‘Run TCs on selected VMs’
options of the ‘Virtual Machines’ tab is not responsive. In such a case it is necessary to instruct
the VMs that the IP address has changed. This can be performed from the Instances of the EC2
Dashboard; from this screen click on the security group shown in the ‘Security Groups’ column.
This brings up details of the security group. Click on Inbound and then Edit and then change the
Source to My IP, or,

Protein Refinement 17

17 Protein Refinement

 ... PROTEIN REFINEMENT

3.1 Reading Protein Data Bank (PDB) CIF files

[pdb_cif_to_str_file $file] ...
[pdb_ignode_adps !E0]
[pdb_cif_sites $sites]
[pdb_cif_to_str #0]

Examples

CF-PROTEIN\2PVB-P212121\GEN.INP

CF-PROTEIN\2PVB-P212121\MATCH.INP

CF-PROTEIN\6Y84-C121\REFINEMENT.INP

Protein Data Bank (PDB) PDBx/mmCIF fles from https://www.rcsb.org/ can be downloaded and
converted to INP format using pdb_cif_to_str_file. The operation is performed when
pdb_cif_to_str is 1; on termination of refinement pdb_cif_to_str is set to 0 in the OUT file. The INP
text generated is placed in the INP file after the pdb_cif_to_str keyword, or:

pdb_cif_to_str_file cif.cif
pdb_ignode_adps 1
pdb_cif_to_str 0

xdd_scr sf.cif
lam lo 0.9096
str

scale @ 1
a 51.03
b 49.81
c 34.57
space_group P212121
site ACE_C_0_1_HETATM x 0.07354 y 0.35529 z 0.47637 occ C 1.00 beq 6.24
site ACE_O_0_2_HETATM x 0.06210 y 0.34246 z 0.50194 occ O 1.00 beq 7.96
site ACE_CH3_0_3_HETATM x 0.06198 y 0.35666 z 0.43651 occ C 1.00 beq 8.20
site SER_N_1_4_ATOM x 0.09557 y 0.36858 z 0.48319 occ N 1.00 beq 6.66
site SER_CA_1_5_ATOM x 0.10676 y 0.36880 z 0.52155 occ C 0.46 beq 8.09
...
rigid

point_for_site SER_N_1_4_ATOM ux -1.40900 uy 0.28011 uz -1.21189
point_for_site SER_CA_1_5_ATOM ux -0.83800 uy 0.29111 uz 0.11411
point_for_site SER_CA_1_6_ATOM ux -0.70700 uy 0.20011 uz 0.04411
...
Rotate_about_axies(@ 0 RX_, @ 0 RY_, @ 0 RZ_)
translate tx @ 6.28600 ty @ 18.07889 tz @ 17.91589

A rigid body is generated for each residue with coordinates set relative to its geometric center.
Refinement can proceed on the generated INP text by setting the file name of xdd_scr to the name
of the structure factor file 2PVB-SF.CIF, also downloaded from https://www.rcsb.org/. Running
2PVB\GEN.INP produces GEN.OUT; setting GEN.INP to GEN.OUT and running produces a fit.

pdb_cif_sites processes sites with names matching the site identifying string $sites. This can be
used, for example, to extract all residues of the same type. The translate keywords of the rigid
bodies can then be set to zero and the individual sites of the residues penalized such that sites of
the same name are brought together; example INP text to do this is as follows:

 macro Match(s)
 {
 atomic_interaction s = R^2;

https://www.rcsb.org/
https://www.rcsb.org/

Protein Refinement 18

18 Protein Refinement

 ai_sites_1 s*
 ai_sites_2 s*
 ai_closest_N 1
 ai_only_eq_0
 penalty = s;
 }
 Match(LYS_N_)
 Match(LYS_CA_)
 Match(LYS_C_)
 Match(LYS_O_)
 Match(LYS_CB_)
 Match(LYS_CG_)

…

Running example 2PVB\MATCH.INP produces the following showing overlay of LYS residues:

3.2 Protein Refinement, 6y84, SARS-CoV-2 main protease

The structure factors and PDBx/mmCIF files for 6y84 can be downloaded from the PDB. To gen-
erate an initial INP file then create an INP file with the following (see 6Y84-C121\REFINEMENT.INP):

pdb_cif_to_str_file cif.cif
 pdb_ignode_adps 1
 pdb_cif_to_str 0

After refinement, the INP file can be updated with the structure generated from the CIF file. Re-
fining on the updated INP file gives:

Protein Refinement 19

19 Protein Refinement

The refinement comprised 50348 unique reflections and 1826 parameters and the time to con-
vergences was 33s on a laptop with all graphics operational. Restrains/constrains can of course
be added.

Solving proteins at atomic resolution 20

20 Solving proteins at atomic resolution

 ... SOLVING PROTEINS AT ATOMIC RESOLUTION

Include_Charge_Flipping
charge_flipping

[cf_plot_histo !E]
[cf_plot_fit !E]
[add_to_phases_of_non_weak_reflections !E] ...
[scale_flipped !E]
[cf_percent_ED_ge_H #]
[pick_atoms $atom]…

[choose_from !E]
[choose_to !E]
[choose_randomly !E]
[with_symmetry !E]
[omit !E]
[insert !E]
[pick_fwhm !E1]
[omit_fwhm !E1]
[insert_fwhm !E1]

[insert_atoms {
[activate !E1]
[in_cartesian]
[insert_atom] …

[x !E] [y !E] [z !E] [occ !E]
}]…
[cf_set_phases !E {

#h #k #l #Re #im
}]
[prm N # val_on_continue !E] …

Macros in CHARGE_FLIPPING.INC

Examples

CF-PROTEIN\

1A7Y-P1\SOLVE.INP

2ERL-C2\SOLVE.INP

1BYZ-P1\SOLVE.INP

2KNT-P21\SOLVE.INP

1AHO-P212121\SOLVE.INP

4LZT-P1\SOLVE.INP

1MC2-C121\SOLVE.INP

1DY5-P21\SOLVE.INP

2WFI-P212121\SOLVE.INP

1HHZ-P3221\SOLVE.INP

1C75-P212121\SOLVE.INP

1B0Y-P212121\SOLVE.INP

1CTJ-R3R\SOLVE.INP

2PVB-P212121\SOLVEINP

1CKU-P212121\SOLVE.INP

1SWZ-P3221\SOLVE.INP

5DA6-R32\SOLVE.INP

1CTJ-R3R\1-ATOM.INP

2PVB-P212121\1-ATOM.INP

1C75-P212121\1-ATOM.INP

5DA6-R32\1-ATOM.INP

1CKU-P212121\1-ATOM.INP

2WFI-P212121\1-ATOM.INP

4LZT-P1\2-ATOMS.INP

The largest proteins ever solved ab initio at atomic resolution can be solved using modified charg-
ing flipping strategies. Difficult or large structures can be solved in minutes, rather than days,
using Amazon AWS Cloud computing. New/modified charge_flipping keywords are shown above.
A single strategy does not solve all structures; A strategy successful on one structure is not nec-
essarily successful on another. However, it will be shown that only two strategies can solve a
large range of the most difficult structures. New keywords allow for a variety of strategies.
scale_flipped scales flipped electron density (ED) charge; it is applied each charge-flipping itera-
tion. insert_atom inserts atoms in the ED when activate is non-zero. val_on_continue for prm(s)
are evaluated at the end of each charge-flipping iteration. cf_percent_ED_ge_H returns the per-
centage of ED pixels greater than 1 where the maximum of the ED is set to number of electrons in
the heaviest atom defined by f_atom_type. Values less than 1 often signal a Uranium atom situa-
tion where a single ED peak dominates. cf_percent_ED_ge_H is displayed during charge flipping
in the Fit Dialog.

When cf_set_phases is non-zero, the phases for the family of reflections (#h, #k, #l) are set to
the phase corresponding to #Re and #Im. cf_set_phases is useful when phases are known or for

Solving proteins at atomic resolution 21

21 Solving proteins at atomic resolution

setting origin defining phases; for triclinic structures, three origin defining phases are possible.
Additionally, intensities of the reflections are scaled by the value evaluated by cf_set_phases.

Table 4-1 show difficult benchmark structures, as listed by Elser et al. (2017) and Burla et al. (2011),
that have been solved ab initio; see corresponding SOLVE.INP files for details. It is best to do pre-
liminary investigations on the local computer (non-Cloud) to determine which strategy might
work best. Once a strategy is chosen, INP files can be fed to the Cloud for rapid structure solution.
Up to 500 spot instance Virtual Machines (VMs) are easily obtained on the Amazon AWS system in
Australia at a cost of ~0.035 USD cents per VM per hour, or, 3.40 USD per hour for 100 machines.
These prices are Amazon AWS dependent. Prices are shown prior to the creation of the VMs. The
times shown in Table 4-1 can be easily doubled when one considers the preliminary analysis taken
to arrive at the appropriate strategy. Typically, strategies are tried on the local computer before
migrating the problem to the Cloud. Also, the structure solution process is normally halted after
the first solution is found; for the investigative purposes, however, the structures in Table 4-1
were each solved at least 5 times. The two strategies mentioned in Table 4-1 are:

‘ S0 strategy
 fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections 90
 fraction_density_to_flip 0.9 scale_flipped 0.6

S0 seems to work well for large structures with a relatively heavy atom. Non-triclinic structures
with symmetry seems to succumb to the S1 strategy, or:

‘ S1 strategy
fraction_reflections_weak 0.5 add_to_phases_of_weak_reflections = Rand(-180, 180);

 fraction_density_to_flip 0.97 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 3
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 10);

with_symmetry 1
 insert 10 ‘ Increase if the most dominant atom does not change

symmetry_obey_0_to_1 0.25 find_origin 0
flip_regime_2 = Sine_Wave(10/4,-2,2,10); ‘ Used when there’s not enough perturbation

S1T extends the S1 strategy with the addition of the tangent formula, or, the inclusion of:

Tangent(0.5, 30)

Table 4-1. Ab initio structure solution strategies. Time indicates time to solution on average.
Each structure was solved at least 5 times. Num_VMs greater than 8 refers to the number of
VMs used on the Cloud; Num_VMs=9 corresponds to an 8 core local computer (a laptop) . Cost
corresponds to the average Cloud cost to a solution using the strategy indicated.

Solved

PDB

code

Space

group

N/Z

dmin

(Å)

Time

(min)

Num

VMs

Cost

USD

Strategy

Np

yes 1a7y P1 270 0.94 0.1 8 - S0 -

yes 2erl C2 303 1.00 1 200 0.10 S1 8

yes 1byz P1 408 0.90 1 200 0.10 S0 -

Solving proteins at atomic resolution 22

22 Solving proteins at atomic resolution

yes 2knt P21 460 1.20 16 200 2.00 S1T 7

yes 1aho P212121 500 0.96 1 200 0.10 S1 8

No 1w7q P65 828 1.10 >240 200 >28 S0,S1 4

yes 4lzt P1 1183 0.95 2 8 - S1 10

yes 1mc2 C2 1254 0.80 2 200 0.20 S1 10

yes 1dy5 P21 1894 0.87 1 500 1.40 S1 30

yes 2wfi P212121 1920 0.75 18 500 5.10 S1 15

yes 1hhz P3221 354 0.99 7 200 1.00 S1 6

yes 1c75 P212121 1184 0.92 1 8 - S0 -

yes 1b0y P212121 837 0.93 1 8 - S0 -

yes 1ctj R3:R 918 1.10 1 200 0.10 S1 4

yes 2pvb P212121 1096 0.91 3 200 0.35 S1 5

yes 1cku P212121 1599 1.20 1 200 0.15 S1 8

yes 1swz P3221 1254 1.06 50 200 5.80 S1 15

yes 5da6 R32 1390 1.05 5 500 1.40 S1 15

PDB code Reference

1a7y, 2erl, 1byz, 2knt, 1aho, 1w7q, 4lzt, 1mc2, 1dy5, 2wfi Elser & Lan (2017)

1hhz, 1c75, 1b0y, 1ctj, 2pvb, 1cku, 1swz Burla et al. (2011)

5da6 Mooers (2016)

PDB codes 1b0y, 1ctj, 1c75 and 1cku are easily solved (a few minutes) on a laptop using the S0
strategy. 2knt uses the tangent formula due to its relatively low-resolution data (1.2Å) as well as
its relatively small number of non-hydrogen atoms in the asymmetric unit. 1w7q is a light element
structure that was not solve ab initio after more than four hours. flip_regime_2 of S1 introduces
perturbation and it should be used for cases where there the ED seems quiet during the charge
flipping process; decreasing the absolute value of flip_regime_2 reduces perturbation. In the
case of 1cm2, flip_regime_2 was set to oscillate between -1 and 1. Larger values clearly shows too
much perturbation in the ED.

Graphically inspecting the ED or looking at the (%ED > H) output on the local can be used to deter-
mine if there’s too little or too much perturbation, during charge flipping. (%ED > H) should typi-
cally range from 1 to 5. For example, setting fraction_reflections_weak to 0.9 results in too much
perturbation. Or, using the Tangent formula macro on P1 structures, without the mitigation strat-
egy of Fix_Uranium_3, results in too little perturbation resulting in uranium atom solutions. The
value set for Fix_Uranium_3 should be just high enough to prevent Uranium atom solutions; a
value of 1 seem to work in most cases. The number used for insert of pick_atoms should be just
high enough to change the position of the highest intensity ED peak every 40 to 50 iterations as
defined by choose_randomly; note pick_atoms is executed when choose_randomly is greater than
zero. add_to_phases_of_weak_reflections=90 results in a shifting origin and it should not be used
with symmetry_obey_0_to_1 ; the latter prevents origin shifting.

Solving proteins at atomic resolution 23

23 Solving proteins at atomic resolution

add_to_phases_of_weak_reflections should be set to Rand(-180,180) instead of 90 when using
symmetry_obey_0_to_1. Further structure solution tips are:

• Try the simple S0 strategy first for number of atoms less than about 300.

• If a heavy atom is present, then try S0.

• Inspect the ED graphically; if it does not show distinct atoms after a few iterations then
change strategy.

• Use S1 for large difficult structures.

• Try the tangent formula when the number of non-hydrogen atoms in the asymmetric is less
than ~500 atoms. The tangent formula reduces perturbation allowing lower resolution struc-
ture to be solved.

The range of convergence of structure factor phases can be investigated by loading optimum
structure factor phases values, using set_initial_phases_to, and then adding to the optimal
phases using randomize_initial_phases_by. High resolution data can have their optimal phases
changed by an amount of 0.96*Rand(-180,180) whilst still being able to solve the structure within
a few dozen charge flipping iterations. Most of the SOLVE.INP examples contain the following for
investigating this range of convergence:

 #if (0)
 set_initial_phases_to optimal.fc
 randomize_initial_phases_by = Rand(-180, 180) 0.9;
 #endif

4.1 Ab initio solution of triclinic 4lzt

PDB code 4lzt comprises 1183 non-hydrogen atoms in the unit cell and is considered difficult to
solve, see Elser et al., 2017. 4lzt contains 10 Sulphur atoms and these are considered moderately
heavy. If we were to insert ED peaks at positions corresponding to the highest two peaks of the
optimum electron density, then charge flipping finds a solution and within a few iterations;
4LST\2-ATOMS.INP demonstrates this where an ED starting with the two highest optimal peaks,
inserted using insert_atoms, produces and R-factor plot of:

In fact, any two of the five highest peaks produce similar R-factor plots. However, these optimal
ED peak positions are unknown. The strategy that works therefore involves picking an atom

Iteration

302520151050

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\2-atoms.inp

Solving proteins at atomic resolution 24

24 Solving proteins at atomic resolution

randomly out of the 10 largest peaks in the electron density and setting the picked atom to a large
density. The INP file looks like:

 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 10);
 insert 10
 Fix_Uranium_3(0.5)
ATP(1000, 1) ‘ Totally randomize phases after 1000 iterations

pick_atoms picks atoms with a FWHM of 5 Å, as defined by pick_fwhm; this relatively large value
ensures that the picked atoms are approximately 5 Å apart. Once picked, pick_atoms removes
the atoms with a FWHM as defined by omit_fwhm, and then inserts atoms with a FWHM of in-
sert_fwhm. A solution of 4lzt takes a minute or two on a laptop computer and a typical R-factor
plot looks like:

4.2 Solution of non-triclinic lattices using a known atomic position

Large non-triclinic structures with many origins are difficult to solve. However, because of sym-
metry, non-triclinic structures can often be solved when the position of a single atom is known
within the ED. Atoms can be inserted in the ED using insert_atoms; for PDB code 2wfi we have:

charge_flipping
 cf_hkl_file sf.cif ‘ Structure fact file from PDB
 space_group P212121
 a 37.544 b 65.144 c 69.680
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 macro Occ_0 { 100 }
 insert_atoms {
 activate = Mod(Cycle_Iter, 100) == 0;
 load insert_atom x y z occ {
 0.72697 0.77709 0.11312 100 ‘ Position of known atom
 }

Iteration

9008007006005004003002001000

R
-f

a
ct

o
r

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\4lzt-P1\solve.inp

Solving proteins at atomic resolution 25

25 Solving proteins at atomic resolution

 }

The x, y, z coordinates of insert_atom can be in Cartesian coordinates using the in_cartesian key-
word at the insert_atoms level. The use of symmetry_obey_0_to_1 often assists in solution deter-
mination for non-triclinic structures. 2WFI can be solved ab initio, however it can be easily solved
if the position of one atom was known as seen by tunning 2WFI-P212121\1-ATOM.INP; it gives and R-
factor plot that looks like:

The OpenGL plot shows the solution as follows:

Iteration

35302520151050

R
-f

a
ct

o
r

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Launch Mode: C:\c\t5\cf-protein\2wfi-P212121\1-atom.inp

Solving proteins at atomic resolution 26

26 Solving proteins at atomic resolution

Using any one of the first six highest optimal ED peaks results in a solution. Many structures can
be solved from knowing the position of just one atom. 1-ATOM.INP files, similar-to the 2wfi case,
are given for 1ctj, 2pvb, 1c75, 5da6, 1cku, 2wfi.

4.3 Ab initio solution of 5da6 in space group R32

PDB code 5da6 comprises 1390 atoms in the asymmetric unit. Placing an ED peak at any of its
potassium sites result in the correct solution (see 5DA6-R32\1-ATOM.INP). 5da6 can also be solved
ab initio using the following INP file (see 5DA6-R32\SOLVE.INP):

charge_flipping
 cf_hkl_file sf.cif ‘ Structure factor file from PDB
 space_group R32
 a 42.890 b 42.890 c 266.936 ga 120.00
 fraction_reflections_weak 0.5
 add_to_phases_of_weak_reflections = Rand(-180, 180);
 fraction_density_to_flip 0.97
 scale_flipped 0.2
 symmetry_obey_0_to_1 0.25 find_origin 0
 pick_atoms *
 pick_fwhm 5 omit_fwhm 1 insert_fwhm 1
 choose_randomly = If(Mod(Cycle_Iter, 50), 0, 15);
 insert 10
 flip_regime_2 = Sine_Wave(50 / 4, -2, 2, 50);
 ATP(1000, 1) ‘ Randomize all phases every 1000 iterations

It takes approximately six hours on average to solve 5da6 using the above INP file on an 8-core
laptop computer. This time is reduced to 5 minutes on the Cloud where the INP file is run simul-
taneously on 500 VMs. The best solution on each VM computer or the best solution overall can be
viewed during the process. A typical Cloud run looks like:

Fast simultaneous refinement of 1000s of patterns 27

27 Fast simultaneous refinement of 1000s of patterns

 ... FAST SIMULTANEOUS REFINEMENT OF 1000S OF PATTERNS

[str...]
[peak_buffer_similar_tag !E]
[hkl_similar_tag !E]

Example

TEST_EXAMPLES\1000S-OF-PATERNS\FIT.INP

Previous version of TOPAS applied threading at the phase level; Version 7 extends threading to
the xdd level. Computers with many processors now show large improvements in speed when
many diffraction patterns are refined simultaneously. Refining on 1000s of patterns with many
threads is also memory intensive. To reduce memory usage, TOPAS looks for items that are
unique and stores only one. For example, operating on an INP file with 1000s of data files and
1000s of phases, the program:

• Calculates and stores only unique structures.
• Calculates and stores only unique sets of hkls amongst the unique structures.
• Calculates and stores only unique bkg derivatives.
• Calculates and stores only unique peak positions and d-spacing amongst unique sets of hkls

and lattice parameters.
• Calculates and stores only unique scale_pks equations.
• Calculates and stores only unique th2_offset equations.
• Calculates and stores only unique pk_xo equations.
• Calculates and stores only unique x-axis data (ie. xdd data files with the same x-axis).

For example, if 10000 data files were loaded each with 10000 identical sets of hkls, then only one
set of hkls are stored saving approximately 1.6 Gbytes of memory. Operating on items that are
unique also reduces calculations, for example, scale_pks equations that have identical (or similar)
hkls are only calculated once; and similarly, for th2_offset, pk_xo, internal peak positions and in-
ternal d-spacings.

For phases with similar sets of hkls, then peaks-buffers can be calculated once using the
peak_buffer_similar_tag. For example, only three peaks-buffers are calculated and stored in the
following even through 8 phases are defined:

xdd …
str … peak_buffer_similar_tag 1
str … peak_buffer_similar_tag 2
str … peak_buffer_similar_tag 3
str … peak_buffer_similar_tag 1

xdd …
str … peak_buffer_similar_tag 3
str … peak_buffer_similar_tag 1
str … peak_buffer_similar_tag 2
str … peak_buffer_similar_tag 3

An exception is also thrown if peaks-buffers with similar peak_buffer_similar_tag are not actually
similar; for example, the following will throw an exception as the CS_L parameters are different
(ie. two independent parameters a1 and a2).

Fast simultaneous refinement of 1000s of patterns 28

28 Fast simultaneous refinement of 1000s of patterns

xdd …
str … peak_buffer_similar_tag 1 CS_L(a1, 100)

xdd …
str … peak_buffer_similar_tag 1 CS_L(a2, 100)

In some cases, sets of hkls are similar but not identical due to slightly different lattice parame-
ters. In such cases hkl_similar_tag can be used to force the use of a single set of hkls resulting in
reduced memory usage and improved speed. In general:

• Phases with the same peaks-buffer can have different fit_obj(s), bkg(s), th2_offset(s),
scale_phase_X(s), scale_pks(s) or pk_xo(s).

• Phase with the same structural parameters (same sites) can have different fit_obj(s), bkg(s),
th2_offset(s), scale_phase_X(s), scale_pks(s), pk_xo(s) and lattice parameters.

5.1 Example refinement of 1000s of patterns

First, it may be best to set the number of threads in the file MAXNUMTHREADS.TXT to the number
of physical CPU cores in your computer. FIT.INP creates a test pattern with 4001 data points when
“#define CREATE__” is used. When “#define CREATE__” is commented out then refinement pro-
ceeds on many patterns, the number of which is stipulated by the Num_Files_2 macro. Each pat-
tern has:

• three structures with the number of hkls generated being 15, 33 and 52

• five unique bkg parameters

• four unique lattice parameters

• three unique scale parameters

• one unique zero error parameter

• one unique specimen displacement parameter

• one unique LP_Factor parameter

Global to all patterns are three CS_L and
three CS_G parameters. This results in
12009 independent parameters for 1000
patterns, or 60009 independent parame-
ters for 5000 patterns. The A matrix is
sparse as seen in the (right) for 10 patterns.

Fast simultaneous refinement of 1000s of patterns 29

29 Fast simultaneous refinement of 1000s of patterns

The following plots the time taken to perform 30 iterations as a function of Number-of-patterns
for Version 6 and Version 7 with the use of peak_buffer_similar_tag; and additionally, for Version
7 without the use of peak_buffer_similar_tag.

Seen is the very large reduction in refinement times when peak_buffer_similar_tag is used. Ver-
sion 6 is considerably slower due to threading at the str level rather than the xdd level; Version 7
with peak_buffer_similar_tag is in fact well-over 120 times faster than Version 6. For Version 7
only, the following shows that the speed gain of Time with peak_buffer_similar_tag divided by
Time without peak_buffer_similar_tag increases with Number-of-patterns.

The following shows the reduction in memory usage for Version 7 compared to Version 6.

The above refinements for FIT.INP had three unique structures across all patterns. If the beq pa-
rameters of the three structures were refined independently then there would be 3*Number-of-

0

5

10

15

20

25

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Sp
ee

d
 g

ai
n

Number of patterns

Speed gain for FIT.INP, 8 Threads
peak_buffer_similar_tag used

0

50

100

150

200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Ti
m

e
(s

)

Number of patterns

Time for FIT.INP, 8 Threads
peak_buffer_similar_tag used

Version 7

Version 6

Version 7, No tag

0

500

1000

1500

2000

2500

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

M
em

o
ry

 u
se

d
 (

M
b

yt
es

)

Number of patterns

Memory usage for FIT.INP, 8 Threads
peak_buffer_similar_tag used

Version 7

Version 6

Fast simultaneous refinement of 1000s of patterns 30

30 Fast simultaneous refinement of 1000s of patterns

patterns structures and the times for Version 7 with peak_buffer_similar_tag increase by approx-
imately 50%. This increase is modest considering the increase in Numbed-of-parameters as well
as the increase in structure factor calculations.

Deconvolution 31

31 Deconvolution

 ... DECONVOLUTION

[A0_matrix_is_constant]
[create_pks_name $a_name]
[create_pks_fn $fn_name]

Examples
TEST_EXAMPLES\DECONVOLUTION\

PBSO4-DECON.INP

SIM-CALC.INP

SIM-DECON.INP

The deconvolution method of aCoelho (2018) has been implemented; it uses three macros found
in TOPAS.INC, Deconvolution_Init, Deconvolution_Bkg_Penalty and Deconvolution_Intensity_Pen-
alty. The method refines on linear parameters only; these linear parameters are peak intensity
and background parameters; their derivatives are unchanging and hence the A0 matrix is un-
changing. The keyword A0_matrix_is_constant informs the program that only linear parameters
are being refined and hence the A0 matrix is calculated only once. Attempts to use A0_ma-
trix_is_constant with quick_refine, approximate_A, chi2 or with refinement of non-linear param-
eters results in an error.

create_pks_name is a xo_Is dependent keyword that creates a peak at each step along the x-axis
with peak intensity parameter names starting with the string $a_name. Peaks are not created if
peaks already exist for the xo_Is phase. If the ‘$’ character is placed immediately after cre-
ate_pks_name and if create_pks_name is within a macro then the output from create_pks_name
is placed after the macro. create_pks_fn additionally appends a penalty to each peak with the
penalty being written in terms of a function called fn_name. The OUT file is updated with peaks
which looks something like:

xo 5.00 I a25_ 0.00217` penalty = dfn(5,a25_,a26_);
xo 5.02 I a26_ 0.00000` penalty = dfn(5.02,a26_,a27_);
xo 5.04 I a27_ 0.00000` penalty = dfn(5.04,a27_,a28_);

The dfn function takes arguments of x-axis position of the peak and two intensity parameter
names, one at the x-axis position and the other at the next x-axis position. These keywords and
functions are used in macros in the following manner:

Deconvolution_Init(0.5)
xdd …

Deconvolution_Bkg_Penalty(0.5)
xo_Is

Deconvolution_Intensity_Penalty(a, afn)

The deconvolution process comprises three separate refinement runs. 1) Fitting peaks to the dif-
fraction pattern with peak shapes fixed to expected peak shapes, 2) creating a calculated pattern
with a chosen peak shape, typically a peak shape comprising specimen contributions, and 3) a
final run to produce a deconvoluted pattern with noise. The PBSO4-DECON.INP example is ready to
run, it can be used as a template for other deconvolution processes, it is defined as:

#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3
macro Data_File { Pbso4 }
#ifdef DO_FINAL_DECON_

Deconvolution 32

32 Deconvolution

 RAW(..\##Data_File) ' load for comparison purposes
 xdd Data_File##-decon-specimen.xy
 x_calculation_step 0.025
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy) ‘ Final deconvoluted pattern
#else
 Deconvolution_Init(0.5)
 RAW(..\##Data_File)
 start_X 15
 bkg @ 0 0 0 0 0 0 0
 Deconvolution_Bkg_Penalty(0.5)
 ‘LP_Factor(17) ‘ Do not include when doing deconvolution
 CS_L(262.73494)
 Strain_L(0.03785)
 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.0001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 Out_X_Difference(Data_File##-diff.xy)
 CuKa5(0.0001)
 Radius(173)
 Full_Axial_Model(10, 10, 10, 4.13679, 4.13679)
 Divergence(1)
 Slit_Width(0.2)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)

 #endif

Background should be less than all observed data and it should be graphically inspected during
step 1. Background can be reduced by decreasing the c parameter of the Deconvolution_Bkg_Pen-
alty macro; this parameter can range from 0.05 to 1. If the bases of the peaks are not fitting well,
then the background is still too high. Step 1 and 2 produces output XY files which are then used in
step 3. The exclusion of LP_Factor, and similar peak scaling parameters, is important as peak
intensities are used in a penalty inside the Deconvolution_Intensity_Penalty macro. The deconvo-
lution process can be used for all types of data including neutron TOF; step (1) takes approxi-
mately 10 to 30 seconds on present laptops; steps (2) and (3) takes a trivial amount of time (< 1s).
The deconvolution macros are as follows:

macro Deconvolution_Init(c) {
process_times
A0_matrix_is_constant ‘ All parameters are linear
penalties_weighting_K1 = c; ‘ A value of 0.5 seems sufficient
save_best_chi2 ‘ We want best Chi2; not best Rwp
chi2_convergence_criteria 1e-5
continue_after_convergence ‘ ~100 iterations is typically sufficient (~20s)
pen_weight 1 ‘ Override the default

}
macro Deconvolution_Intensity_Penalty(i_name, fn_name) {

fn fn_name(x, a0, a1) = (a0 - a1)^2 / ((a0 + a1) Yobs_at(x) + 1e-6);
default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.99, 1.01);
create_pks_fn fn_name

Deconvolution 33

33 Deconvolution

create_pks_name $ i_name
}
macro Deconvolution_Bkg_Penalty(& c, & w_min) {

xdd_sum #m_unique pen = (Yobs - Get(bkg))^2 / Max(Get(bkg) Yobs, w_min^2);
penalty = pen c;

}
macro Deconvolution_Bkg_Penalty(& c) { Deconvolution_Bkg_Penalty(c, 1) }

pen_weight over-rides the default; the default works but with slower convergence. Note, both
the peak intensity and Bkg penalties are Yobs scale invariant where scaling of Yobs does not
change the magnitude of the penalties relative to 𝜒02. Yobs_at is a new function that returns the
value of Yobs at x. w_min in the Deconvolution_Bkg_Penalty macro allows for the setting of the
expected minimum of Yobs*Bkg; a value of 1 for counting statistics. For XYE files, where Yobs is
small and where SigmaYobs used (tof data for example), then w_min should be reduced.

6.1 Deconvolution – Simulated pattern

A simulated pattern was created with noise using SIM-CREATE.INP and the instrument contribu-
tion deconvoluted using SIM-DECON.INP; the latter INP file looks like:

/* Three runs to produce the deconvoluted pattern.
 The name of the final deconvoluted pattern is:

 pbso4-decon-final.xy

 Define one at a time in the following:

 #define DO_REFINEMENT_ ‘ Run 1
 #define DO_SPECIMEN_OUT_ ‘ Run 2
 #define DO_FINAL_DECON_ ‘ Run 3
*/
#define DO_REFINEMENT_ ' Step 1
‘#define DO_SPECIMEN_OUT_ ' Step 2
‘#define DO_FINAL_DECON_ ' Step 3, Clear the GUI first

macro Data_File { Sim }
#ifdef DO_FINAL_DECON_
 xdd Data_File##-calc-rand.xy ' load for comparision purposes
 xdd Data_File##-calc-narrow.xy
 user_y d1 Data_File##-decon-specimen.xy
 user_y d2 Data_File##-diff.xy
 fit_obj = d1 + d2;
 Out_X_Ycalc(Data_File##-decon-final.xy)
#else
 Deconvolution_Init(0.5)
 xdd Data_File##-calc-rand.xy
 bkg @ 259.381081 89.8339877 31.6429117 -34.4743462
 34.3097757 -55.7270435 30.631573
 Deconvolution_Bkg_Penalty(0.1)

 /* Specimen */
 CS_L(300)
 CS_G(300)
 Strain_L(0.05)
 Strain_G(0.05)

Deconvolution 34

34 Deconvolution

 #ifdef DO_SPECIMEN_OUT_
 iters 0
 CuKa1(0.001)
 Out_X_Ycalc(Data_File##-decon-specimen.xy)
 #else ' DO_REFINEMENT_
 num_cycles 20
 Out_X_Difference(Data_File##-diff.xy)

 /* Instrument */
 CuKa2(0.001)
 Radius(217)
 Full_Axial_Model(12, 12, 12, 2.3, 7)
 Divergence(1)
 Slit_Width(0.1)
 Absorption(60)
 #endif
 xo_Is
 Deconvolution_Intensity_Penalty(a, dfn)
#endif

The following figure is the deconvoluted pattern (green line, bottom plot) compared with the ex-
pected deconvoluted pattern (red line on top of green line). The top plot (blue line) is the original
simulated pattern with noise and without noise (red line on top of blue line).

(Counts)1/2

Deconvolution 35

35 Deconvolution

Parameter errors determined from refinement using the deconvoluted pattern are almost iden-
tical to errors produced using the original pattern, see aCoelho (2018).

2()

PDF-Generation 36

36 PDF-Generation

 ... PDF-GENERATION

[xdd...]
[rebin_with_dx_of !E]
[pdf_generate {

[dr !E]
[r_max !E]
[gr_sst_file = “File”;]
[hat !E [num_hats !E]
[gr_to_fq !E]

}]

Examples

TEST_EXAMPLES\PDF\GENERATE\

FULLERENE\DECON.INP

LIFEPO4\DECON.INP

SILICON\DECON.INP

TUNGSTEN\DECON.INP

PDF generation comprises an inverse Sine transform operating on an ideal diffraction pattern
where background is absent, atomic scattering factors constant, and 2 and peak shapes are
symmetric. The task therefore becomes one of correcting real data such that it matches an ideal
pattern as closely as possible. The corrections include determining a background, atomic scat-
tering factors (if X-ray data), removing Lorentz polarization and removing asymmetry from peak
shapes. To generate the PDF, a deconvolution process similar-to that described in section 5 is
used. It allows for corrections in reciprocal space of peak asymmetry, instrument and emission
profile aberrations, Lorentz polarization and atomic scattering factors corrections. The process
comprises two operations described in a single INP file; these operations are:

• 0) Fit to the reciprocal space diffraction pattern - (Operation 0)

• 1) Generate G(r) - (Operation 1)

• 1.0) Generate ideal pattern Ideal (2) from the parameters determined in step 0.

• 1.1) Convert Ideal (2) to Q space to form Ideal(Q).

• 1.2) Fit a polynomial to Ideal(Q) and save F(Q) = Ideal(Q) – Poly)

• 1.3) Generate G(r) from F(Q)

Each operation requires running the INP file once. Steps 1.0 to 1.3 of operation 1 is performed with
num_runs set to 4.

7.1 PDF-Generating - LiFePO4

Fitting to the pattern, operation 0, follows the deconvolution process of aCoelho (2018). Lattice
parameters are not required. A peak is laid down at each data point of the pattern together with
a background and appropriate penalty functions. Approximate peak shapes from a preliminary
peak fitting analysis, using a ‘standard’ for example, is recommended; once determined peak
shapes are not refined. The data entry part of a typical INP file (see LIFEPO4\ DECON.INP for exam-
ple) is as follows:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { LFP_0-8Kcap_AgFGM_2x4soll_Eiger1D_8h.xy }
macro Capillary_Scan { capillary.xy }

PDF-Generation 37

37 PDF-Generation

macro Capillary_Rebin { 0.1 } ' Smooth the capillary scan. Zero means no smoothing.
#prm operation = 0; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 to generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)
#prm use_narrow_peak_shape = 1; ' A 0 means use full peak shapes in generating G(r)
'--
' Inputs for reciprocal space fit, operation = 0
macro & Average_f { f0_Li + f0_Fe + f0_P + 4 f0_O } ' formula of unit cell
#prm lab_no_monochromator = 1; ' Set to 1 if using Laboratory instrument.
#prm use_Xo_Is_phase = 1; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right,
 ' or, maybe when there's Fluorescence.
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.
prm pc0 1 ‘ Poly_Capillary coefficients; comment out if
prm pc1 0 ' not using Capillary as background.
inp_text fluorescence_bkg
 {
 bkg @ 3.49160163` -0.96682842` 0.292687899`
 }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 2.4 }
macro Finish_X { 103 }
macro Step_X { 0.02 } ' Set to zero to use measured step size.
 ' Set to non-zero if scale_yobs_by is used.
 ' Set to non-zero if unequal x-axis steps.
‘--
' Inputs for generating F(Q), operation = 1
#prm poly_fq = 7; ' Number of parameters for Poly when fitting Poly to F(Q).
 ' View F(Q) plot, it needs to look right.
macro & Qmin { 0.1 }
macro & Qmax { 17.5 }
macro & Soper_Lorch_Constant { 0 } ' best not to use
macro & Exp_Constant { 0 } ' best not to use
macro & Lorch_Constant { 0 } ' best not to use
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty
 {
 weighting = If(X > (X2 - 1), 10, 1); ' Weigh the F(Q) data more at Qmax
 penalty = Bkg_at(X1)^2; ' Restrain F(Q=0) to 0
 }
‘--
' Inputs for generating G(r) from F(Q), operation = 1
macro R_Max { 100 }
macro dR { 0.01 }
macro Num_Hats { 3 } ' Best smoothing function for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
‘--
' Reciprocal space peak details, operation = 0

PDF-Generation 38

38 PDF-Generation

macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.001
 la 1 lo 0.5609 lg 1e-6
 la 0.55150 lo 0.5649441 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 }
macro Full_Peak_Shape_Specimen
 {
 CS_G(, 70)
 CS_L(, 45)
 Strain_L(, 0.042)
 Strain_G(, 0.42)
 }
macro Full_Peak_Shape
 {
 Full_Peak_Shape_Specimen
 Full_Axial_Model(10,10,10, 2.3, 5.73430)
 }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 gauss_fwhm 0.05
 #else ‘ Use Full peak shape specimen
 Full_Peak_Shape_Specimen
 ZE(, -0.00730929318) ‘ Set to negative of Rietveld fit
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator)
 (1 + Cos(X Pi/ 180)^2)
 #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--
#if (And(use_Xo_Is_phase, Run_Number == 0, Or(fit_to_data, generate_fq_gr_from_fit)))
 xo_Is
 PDF_Generation_Intensity_Penalty(a,dfn, Intensity_Penalty_Weighting, Scale_Peaks)
#endif
'--

The user needs to input data such as the name of the data files etc… It is best to create a new
directory for each data file. The PDF-GENERATE.INC file, included using the Include_PDF_Generate
macro, contains PDF generation specific macros. Capillary_Scan is the name of the file

PDF-Generation 39

39 PDF-Generation

corresponding to a scan of the empty capillary sample holder. Typically, the capillary scan is col-
lected in a short time leading to poor counting statistics; Capillary_Rebin can therefore be used
to smooth the capillary scan. Setting the #prm called operation to 1 instructs the program to per-
form the fitting process. Setting use_narrow_peak_shape to 1 result in narrow peaks being used
in the generation of the Ideal(2) (operation 1.0); this removes peak broadening as a function of
2.

1.1.1 Operation 0 – Fitting peaks to the diffraction pattern

If use_Xo_Is_phase=0 then no peak fitting is performed and hence no deconvolution; the ideal
pattern is created using (Yobs – Ycalc)/ (LP_Factor <f>), where Ycalc in this case is the back-
ground function. Also, use_simple_bkg_penalty should also be set to 1. When use_Xo_Is_phase=1,
peaks are fitted. The program internally creates peaks and places them at the position of the
xo_Is phase. lab_no_monochromator=1 instructs the program that the data is from a Laboratory
instrument without a monochromator. Background is described as follows:

Background = Poly_Capillary * Capillary_Scan + Poly_Fluorescence

Poly_Capillary is a 1st order polynomial with coefficients defined by the pc0 and pc1 parameters.
Poly_Fluorescence is also a nth order Chebyshev polynomial with coefficients defined by the user
at the inp_text fluorescence_bkg {} construct; set this construct to blank when not using.
LiFePO4 fluoresces and its best to use the smallest number of bkg parameters whilst producing
a good background fit. In the case of LiFePO4, the high angle peaks seem to vanish. This means
that the background should be almost equal to Yobs at the highest angle X2. Such a condition can
be enforced using a penalty as shown in the inp_text called fit_extra. The penalty describes the
following:

(Poly_Capillary(X2) * Capillary_Scan(X2) + Poly_Fluorescence(X2) – Yobs_at(X2))2

X2 is the reserved parameter name corresponding to the end of the diffraction pattern. Poly_Ca-
pillary at X2 is simply (pc0 + pc1), see the X0_ macro in PDF-GENERATE_COMMON.INC, and Poly_Flu-
orescence(X2) corresponds to Bkg_at(X2). The penalty therefore looks like:

inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }

The fit for LiFePO4 looks like:

PDF-Generation 40

40 PDF-Generation

Notice the display of the background line as well as the small difference plot. When rerunning,
operation=0, the peaks at the xo_Is phase is not recreated if they are already present. It may be
necessary, therefore, to delete the peaks at the xo_Is phase when rerunning operation=0. When
use_simple_bkg_penalty=0, the full background penalty is used which relies on counting statis-
tics. For data that does not obey counting statistics, the macros Scale_Yobs_By can be used to
scale the observed diffraction pattern. This scaling is performed using the user_y keyword as fol-
lows:

user_y data_file Data_File
yobs_eqn data.sst = data_file Scale_Yobs_By;

min = Start_X; max = Finish_X; del = Step_X;

Note, user_y can also be a function of the reserved parameter X. The input created for the Kernel
can be viewed in TOPAS.LOG.

1.1.2 Operation 1 – Generation G(r) from the fitted peaks

The macro Average_f is used to calculate the average atomic scattering factor <f> for operation
1.0. For X-ray data, a rough estimate of the atomic species is helpful; for neutron data an estimate
is not required. Applying smoothing functions on F(Q) such as the Lorch and Soper-Lorch func-
tions is not recommended. Instead, applying three hat convolutions directly to G(r) is faster and
more accurate. At operation 1.1 the ideal pattern is converted to Q space. Operation 1.2 generates
F(Q) by fitting a polynomial to Ideal(Q) where:

F(Q) = Ideal(Q) – Poly_FQ

fq_poly describes Poly_FQ using the Chebyshev polynomial of bkg; the optimum number of coef-
ficients is difficult to determine automatically. Its best to inspect the plots produced by operation
1; these are generated and loaded into the GUI and, using the Tiling option, looks like:

2Th Degrees

10080604020

C
o

u
n

ts

140

120

100

80

60

40

20

0

PDF-Generation 41

41 PDF-Generation

Changing fq_poly and rerunning operation 1 updates the four plots; this updating is achieved us-
ing the keyword gui_reload. Using the structure of LiFePO4, the generated G(r) can be fitted-to
by setting operation=2. With use_narrow_peak_shape=0 we get:

The grey line at the center of the plot is a correction added to the calculated G(r) using:

fit_obj = a1 Cos(a2 X + a3) / X;

If this grey line is significant in intensity, then the value of F(Q=0) is incorrect. Controlling the be-
haviour of F(Q) at the start and end of the Q range can be done from the FQ_Bkg_Penalty macro.
For example, F(Q=0)=0 can be set using following penalty:

r (Angstroms)

10080604020

G
(r

)
(a

.u
.)

0.025

0.02

0.015

0.01

0.005

0

-0.005

-0.01

-0.015

-0.02

-0.025

For tiling of plots

PDF-Generation 42

42 PDF-Generation

penalty = Bkg_at(X1)^2;

For operation 1; intermediate pre-processed text fed to the kernel can be sent to TOPAS.LOG (or
TC.LOG) for viewing by setting suspend_writing_to_log_file to 0. For the current example,
TOPAS.LOG for the operation 1.0 part is as follows (comments added):

iters 0

yobs_eqn aac.sst = 1; min 0.01 max = 103; del 0.0025
 gui_ignore
 Out_XDD_SST(decon.sst) ‘ Not expanded for clarity
 ‘ Output Ycalc / (polarization * <f>)
 = Ycalc / (((1 + Cos(X 3.14159265358979/ 180)^2) 1 / (Sin(X

3.14159265358979/360)^2 Cos(X 3.14159265358979/360))) (f0__(
0.974637,0.158472,0.811855,0.262416,0.790108,0.002542,4.334946,0.342451,97.10296
6,201.363831,1.409234) + f0__(12.311098,1.876623,3.066177,2.070451,6.975185,-
0.304931,5.009415,0.014461,18.743040,82.767876,0.346506) + f0__(
1.950541,4.146930,1.494560,1.522042,5.729711,0.155233,0.908139,27.044952,0.07128
0,67.520187,1.981173) + 4 f0__(
2.960427,2.508818,0.637853,0.722838,1.142756,0.027014,14.182259,5.936858,0.11272
6,34.958481,0.390240))^2);

 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 th2_offset = (-0.00730929318);
 gauss_fwhm 0.05 ‘ Use narrow deconvoluted peak
 xo_Is
 extra_X_left = Max(X1 - Max(X1 - 1, 0.1), 0);
 extra_X_right = Max(Min(X2 + 1, 179.9) - X2, 0);
 fn dfn (x, a0, a1) = (a0 - a1)^2 / Max(a0 + a1, 1e-6);
 default_I_attributes 1e-6 min 0 val_on_continue = Val Rand(0.5, 2) + 1e-4;
 create_pks_fn dfn create_pks_name $ a
 xo 1.40009871 I a50_ 0.0178524321`
 xo 1.42009871 I a50_ 0.0178524321`
 xo 1.44009871 I a50_ 0.0178524321`
 …

The actual generation of G(r) occurs when Run_Number = 3; its INP text looks like:

 iters 0
 xdd fq.sst
 gui_reload
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 rebin_with_dx_of 0.001
 pdf_generate {
 dr = 0.01;
 r_max = 100;
 gr_sst_file = "gr";
 hat = 4.4934 / (17.5); num_hats = 3;
 }

1.1.3 Correcting the PDF due to a zero error in reciprocal space

A zero-error added to peak positions in reciprocal can be subtracted from the deconvoluted pat-
tern of operation 1.0. Thus, a zero-error determined from fitting to a standard in reciprocal space
needs to be subtracted from the deconvoluted pattern from within the Deconvo-
luted_Peak_Shape macro.

PDF-Generation 43

43 PDF-Generation

1.1.4 Generating F(Q) from G(r) - gr_to_fq

The LIFEPO4\GR-TO-FQ.INP file creates G(r) from an F(Q) file at Run_Number 0, then in Run_Number
1 it uses the newly created G(r) to reproduce the original F(Q) using gr_to_fq. The INP file is as
follows:

num_runs 3
#if (Run_Number == 0)
 xdd fq-original.sst
 rebin_with_dx_of 0.005
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.01;
 r_max = 300;
 gr_sst_file = "gr-from-fq";
 }
#elseif (Run_Number == 1)
 xdd gr-from-fq.sst
 gui_ignore
 lam ymin_on_ymax 0.0005 la 1 lo 0.5609 lg 1e-6
 pdf_generate {
 dr = 0.00125;
 r_max = 17.5;
 gr_sst_file = "fq-from-gr";
 gr_to_fq 1
 }
#elseif (Run_Number == 2)
 xdd fq.sst
 rebin_with_dx_of 0.01
 user_y fq_from_gr fq-from-gr.sst

 prm a 1 min 1e-6
 fit_obj = fq_from_gr a;
#endif

Run_Number 3 fits the newly created F(Q) to the original F(Q); the result showing the reproduced
F(Q) (in red) and the original F(Q) (in blue) has a small difference plot and is as follows:

 Q

161412108642

F
(Q

)
(a

.u
.)

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

-0.01

PDF-Generation 44

44 PDF-Generation

7.2 PDF-Generating - Fullerene

In this example G(r) from TOPAS is compared to G(r) from GudrunX for Fullerene. The INP file is:

Include_PDF_Generate
'--
' START USER INPUT SECTION
'--
macro Data_File { i15-1-20401_tth_det2_0.xy }
macro Capillary_Scan { i15-1-20398_tth_det2_0.xy}
macro Capillary_Rebin { 0 } ' Smooth the capillary scan. Zero means no smoothing
#prm operation = 1; ' Set to 0 to fit to reciprocal space data
 ' Set to 1 generate F(Q) and G(r)
 ' Set to 2 to fit structure to G(r)

#prm use_narrow_peak_shape = 1; ' Use narrow peak shapes in the generating G(r)
'--
' Inputs for reciprocal space fit, operation == 0
#prm lab_no_monochromator = 0; ' Set to 1 if using Laboratory instrument
#prm use_Xo_Is_phase = 0; ' Set to 0 if not fitting peaks
#prm use_bkg_penalty = 1;
#prm use_simple_bkg_penalty = 1; ' Set to 1 if counting statistics is not right
 ' or maybe when there's Fluorescence
macro & Bkg_Weighting { 1 }
macro & Intensity_Penalty_Weighting { 1 }
macro & Scale_Peaks { 1 } ' Useful if capillary absorption is inhibiting fitting.
macro & Scale_Yobs_By { 1 } ' Useful if data does not obey counting statistics.

prm pc0 1.09673044` ‘ Multiplies Capillary by (pc0 + pc1 x0)
prm pc1 0.146927936 ' Comment out if not using Capillary as background.
inp_text fluorescence_bkg { }
inp_text fit_extra
 {
 penalty = 10000 (Bkg_at(X2) + (pc0 + pc1) Value_at_X(cap_, X2) - Yobs_at(X2))^2;
 }
macro Start_X { 0.6 }
macro Finish_X { 59.9 }
macro Step_X { 0.02 } ' Set to 0 to use measured step size.
 ' Set to non-zero if scale_yobs_by is use.
 ' Set to non-zero if unequal x-axis.
'--
' Input for generating F(Q) - operation == 1
macro & Average_f { f0_C }
macro & Qmin { 0.5 }
macro & Qmax { 25 }
macro & Soper_Lorch_Constant { 1.1 } ' Used for comparison purposes
macro & Exp_Constant { 0 }
macro & Lorch_Constant { 0 }
inp_text fq_poly
 {
 bkg @ 0 0 0 0 0 0 0 0 0
 }
macro FQ_Bkg_Penalty { }
'--
' Inputs for generating G(r) from F(Q), operation == 1
macro R_Max { 50 }
macro dR { 0.01 }

PDF-Generation 45

45 PDF-Generation

macro Num_Hats { 0 } ' Best smoothing funcion for speed and accuracy
macro & Hat_Size { 4.4934 / Qmax }
'--
' Reciprocal space peak details, operation == 0
macro Full_Emmision_Profile
 {
 lam ymin_on_ymax 0.0005 la 1 lo 0.161669 lg 1e-6
 }
macro Deconvoluted_Emmision_Profile
 {
 Full_Emmision_Profile
 }
macro Full_Peak_Shape_Specimen { }
macro Full_Peak_Shape { }
macro Deconvoluted_Peak_Shape
 {
 Deconvoluted_Emmision_Profile
 #if (use_Xo_Is_phase == 0)
 ' Using (Yobs - background); ie. no peak shape
 #elseif (use_narrow_peak_shape)
 ' Use Narrow peak shape
 gauss_fwhm 0.05
 #else
 ' Use Full peak shape
 Full_Peak_Shape_Specimen
 #endif
 }
macro & LP_Factor_
 {
 #if (lab_no_monochromator) (1 + Cos(X Pi/ 180)^2) #endif
 1 / (Sin(X Pi/360)^2 Cos(X Pi/360)) ' Lorentz factor
 }
'--
' END USER INPUT SECTION
'--
Include_PDF_Generate_Common
'--

In this example peaks are not fitted and as such use_Xo_Is_phase=0, use_simple_bkg_penalty=1.
fluorescence_bkg is left empty as Fluorescence is not present. fit_extra is used where a penalty
is applied equating the bkg_tot to the Yobs value at the end of the diffraction pattern. Note, the
use of the Value_at_X function. bkg_tot in this example comprises a fit_obj which corresponds to
(pc0 + pc1 x)*Capillary. In this example the Soper_Lorch_Constant was used in order to match Gud-
runX. G(r) generated for TOPAS (in red) and GudrunX (in Blue) is as follows:

PDF-Generation 46

46 PDF-Generation

7.3 Levenberg-Marquardt constant determination

Improvements to the automatic determination of the Levenberg-Marquardt constant (cCoelho,
2018) has been made. This is especially the case for objective functions that are far from quad-
ratic and when the BFGS method is used. Large refinements, single crystal protein refinements
for example, should see convergence rates increase.

r (Angstroms)

50454035302520151050

G
(r

)
(a

.u
.)

5

4

3

2

1

0

-1

-2

-3

Miscellaneous 47

47 Miscellaneous

 ... MISCELLANEOUS

8.1 Capillary convolution for a focusing convergent beam

The capillary convolution has been extended to include a focusing convergent beam (Coelho &
Rowles, 2017); syntax is as follows:

[capillary_diameter_mm E]
capillary_u_cm_inv E
[capillary_convergent_beam] [capillary_divergent_beam] [capillary_parallel_beam]
[capillary_focal_length_mm E]
[capillary_xy_n #]

See examples LAB6-STOE.INP and LAB6-D8.INP in the directory TEST_EXAMPLES\CAPILLARY. If us-
ing a str phase then capillary_u_cm_inv can be set to the calculated linear absorption coefficient
multiplied by a packing density, for example:

prm packing_density 0.31208
capillary_diameter_mm @ 0.57313

capillary_u_cm_inv
= Get(mixture_MAC) Get(mixture_density_g_on_cm3) packing_density;

capillary_focal_length_mm @ 197.89657
capillary_convergent_beam

If capillary_focal_length_mm is not defined, then it defaults to the diffractometer radius Rs.

8.2 LP-Search - threaded, faster and more exhaustive

LP-Search (Coelho, 2017) uses a new figure of merit function, G, for indexing in a Monte Carlo
search process for finding lattice parameters without the need for peak position extraction, see
TEST_EXAMPLES\LP-SEARCH\LP-SEARCH-PBSO4.INP. LP-Search performs a Pawley refinement af-
ter each LP-Search Monte Carlo cycle. It also displays Gmin as a function of Volume. This Gmin plot
is useful as it shows contrast between the minimum of Gmin, corresponding to the most probable
solution, and the rest of Gmin. Solutions obtained at the end of each Pawley refinement is saved to
the file LP.LOG. The example LP-SEARCH-PBSO4.INP demonstrates LP-Search applied to a PbSO4
pattern whilst using only the high angle part of the pattern where peaks are heavily overlapped.
The output, with the Gmin versus volume plot on the right, is as follows:

Miscellaneous 48

48 Miscellaneous

Comment out ‘#define USE_HIGH_ANGLE_DATA_ONLY’ to use the low angle region to see the dif-
ference. The LP-Search figure of merit function, G, keyword lp_search_fom, can be separately
used in a penalty function, for example:

prm !Np 3
penalties_weighting_K1 = If(Cycle_Iter < Np, 20, 0);
lp_search_fom fom 6.69033248`
penalty = 1000 If(Cycle_Iter < Np, fom, 0);

Here the penalty is applied in the first three iterations of a Pawley refinement (see LP-SEARCH-

PBSO4.INP).

8.3 Sine and cosine transforms

[ft_conv_re_im] ...
[ft_conv_re E]
[ft_conv_im E]

[WPPM_ft_conv_re_im E] ...
[WPPM_ft_conv_re E]
[WPPM_ft_conv_im E]

Sine and cosine transforms. ft_conv is equal to the two keywords [ft_conv_re_im ft_conv_re] and
similarly WPPM_ft_conv is equal to [WPPM_ft_conv_re_im WPPM_ft_conv_re]. More than one
transform can be defined. See ft_conv and WPPM_ft_conv for details.

8.4 *.SST data files

Data files with an SST extension implies an equal x-axis and has the following format:

Miscellaneous 49

49 Miscellaneous

• start, step, data points….

SST files can be loaded wherever *.XY files are loaded. They save space on creation as well as on
loading as x-axis values are not needed. For equal x-axis data then the macro Out_XDD_SST can
be used in the following manner:

xdd …
Out_XDD_SST(filename.sst) = Ycalc; ‘ outut Ycalc
Out_XDD_SST(filename.sst) = Yobs – Ycalc; ‘ output difference plot

8.5 xdd_array and nested xdd_sum

[xdd_array !E] ...
[xdd_sum !E] ...

Example
TEST_EXAMPLES\PDF\GENERATE\I15-DECON.INP

xdd_array calculates and stores an array of values which can then be used in equations which can
in turn be a function of the reserved parameter names of X, Yobs, Ycalc and SIgmaYobs. For exam-
ple, applying the Si atomic scattering factor correction to an xo_Is phase can be performed as
follows:

xo_Is …
xdd_array si_f0 =

2 (‘ atomic scattering data from atmscat.cpp
5.275329 Exp(-2.631338 (Sin(X Pi/360)/Lam)^2) +
3.191038 Exp(-33.730728 (Sin(X Pi/360)/Lam)^2) +
1.511514 Exp(-0.081119 (Sin(X Pi/360)/Lam)^2) +
1.356849 Exp(-86.288643 (Sin(X Pi/360)/Lam)^2) +
2.519114 Exp(-1.170087 (Sin(X Pi/360)/Lam)^2) +
0.145073);

scale_phase_X = si_f0; ‘ apply the atomic scatter factor

The above will give the same result if xdd_array is replaced by prm. The latter does not store the
array and therefore the equation is calculated every time si_f0 is used. Because xdd_array is an
equation, the program also automatically keeps track of its dependencies; this means xdd_array
array is recalculated only when the equation changes; changes can happen, for example, if the
equation is a function of a refinable parameter and the refined parameter changes. This recalcu-
lation only occurs when the array is being referenced; it does not occur at the instance of a de-
pendency change. Use of xdd_array therefore produces fast and efficient INP files.

xdd_sum is similarto xdd_array except an array is not stored; instead, the sum of the values of the
array are calculated and stored. Similar-to xdd_array, the summed value of xdd_sum is only recal-
culated when necessary. In Version 7, xdd_sum can be nested, for example, to normalize the in-
tensities between Yobs and Ycalc the following is now possible:

xdd_sum sum_yobs = Yobs;
xdd_sum sum_ycalc = Ycalc;
xdd_sum = (Yobs – Ycalc sum_yobs / sum_ycalc)^2;
xdd_sum num_data_points = 1;: 0 ‘ 0 is replace by the number of data points

Miscellaneous 50

50 Miscellaneous

8.6 String_To_Variable and Double_To_String functions

The function Double_To_String converts a number to a string. The macro String_To_Variable con-
verts a string to a variable. Together, these macros provide flexibility in the creation of INP files
where the number of data files and phases are large; example usage is as follows:

prm cs_L_1 100
prm cs_L_2 100
prm cs_G_1 100
prm cs_G_2 100
xdd …

str … local str_ 1
str … local str_ 2

xdd …
str … local str_ 1
str … local str_ 2

for xdds {
for strs {

lor_fwhm = 1 / String_To_Prm(“cs_L_”, Double_To_String(str_));
gauss_fwhm = 1 / String_To_Prm(“cs_G_”, Double_To_String(str_));

}
}

In the above, the local parameters str_ acts like structure type identifiers. The String_To_Variable
function can take any number of strings which are concatenated to form a parameter name. The
Double_To_String takes one parameter which can be either a constant or a variable.

8.7 Restraining background using the Bkg_at function

The Chebyshev background function, bkg, can sometimes misbehave during Pawley, Le Bail or
deconvolution refinements. In the case of xdd deconvolution refinements, the Deconvolu-
tion_Bkg_Penalty stabilizes bkg in most cases. In cases of instability, however, the Bkg_at(x)
function can be used in penalty functions to guide the shape of bkg. Bkg_at(x) returns the value
of bkg at the x-axis position of x. Example use of Bkg_at as applied to TOF data is:

bkg @ 0.443519294` 0.0200324829` 0.0113774736`
penalty = 1000000 (Bkg_at(2036) - 0.43)^2;
penalty = 1000000 (Bkg_at(9000) - 0.50)^2;
penalty = 1000000 (Bkg_at(14600) - 0.50)^2;

The first penalty restrains the value of bkg at x=2036 to 0.43. Typically, only two to three Bkg_at
penalties are necessary. The values of 0.43, 0.5 and 0.5 can be determined graphically.

8.8 phase_out_X

[phase_out_X $file [append]]…

Phase dependent keyword that writes phase Ycalc details to a file. The out_eqn can contain re-
served parameter names occurring in xdd_out as well as Get(phase_ycalc); for example:

Miscellaneous 51

51 Miscellaneous

phase_out_X Phase.txt load out_record out_fmt out_eqn {
" %9.0f" = Xi;
" %11.5f" = X;
" %11.5f" = Get(phase_ycalc);
" %11.5f" = Ycalc;
" %11.5f" = Yobs;
" %11.5f\n" = Get(weighting);

}

The x-axis extent of the output corresponds to the x-axis range of the phase. If conserve_me-
meory is used, then the message “phase_out_X: No data” is outputted.

8.9 Functions allowing access to rigid-body fractional atomic coordinates

The standard macro Point(site_name, rx), see TOPAS.INC, returns the x Cartesian coordinate of
the point called site_name; y and z Cartesian coordinates are returned by ry and rz objects re-
spectively. These functions can only to be used in equations of the rigid body which encompass
the keywords and their dependents of point_for_site, z_matrix, translate and rotate. The actual
value return by Point depends on where it is used in the rigid-body, for example, in the following:

rigid
point_for_site O1
translate tx 1
point_for_site O2 ux = Point(O1, rx); ‘ Point here returns 1
translate tx 2
point_for_site O3 ux = Point(O1, rx); ‘ Point here returns 3

the final x Cartesian coordinate of site O3 becomes 3. To instead return fractional coordinates of
points, the functions Point_rx_ua, Point_rx_ub and and Point_rx_ua can be used. These functions
are passed the address of the point in question using the Point macro with one argument. Accom-
panying macros simplifying the call, as defined in TOPAS.INC, are:

macro Point_ua(site_name) { Point_rx_to_ua(Point(site_name)) }
macro Point_ub(site_name) { Point_ry_to_ub(Point(site_name)) }
macro Point_uc(site_name) { Point_rz_to_uc(Point(site_name)) }

These macros can return many different values for the same point in question depending on
where they are called during the rigid body calculation.

8.10 set_top_peak_area

[set_top_peak_area E] ...

Convolutions applied to peaks are normalized after convolution. Thus, the following, from WIF
David’s macro wifd_mic_moderator, will give unintended peak shapes:

Miscellaneous 52

52 Miscellaneous

push_peak ‘ first peak
scale_top_peak = 1 - storage

bring_2nd_peak_to_top ‘ second peak
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage;

add_pop_1st_2nd_peak

where the ratio of the areas of the first peak to the second peak is not (1-storage)/storage. This
can be remedied by normalizing the exp_conv_const aberration as follows:

push_peak
scale_top_peak = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
scale_top_peak = storage Yobs_dx_at(Xo);

add_pop_1st_2nd_peak

However, not all aberrations are easily normalized; set_top_peak_area overcomes this problem
by normalizing the area itself in situ. The INP segment can now be written as:

push_peak
set_top_peak_area = 1 - storage;

bring_2nd_peak_to_top
exp_conv_const = -Ln(0.001) / (taus_0 + taus_1 / lam^2);
set_top_peak_area = storage;

add_pop_1st_2nd_peak

8.11 bring_nth_peak_to_top

[bring_nth_peak_to_top !E]…

A peak stack operation (see push_peak) where the nth peak from the top of the stack is placed at
the top of the stack; n=0 corresponds to the top of the stack; the following two entries are equal:

bring_nth_peak_to_top 1
bring_2nd_peak_to_top

8.12 scale_occ keyword

[scale_occ E] is occ dependent and it scales occ. It and can be a function of H, K, L, D_spacing,
Xo and Th. The occ keyword remains single valued for QUANT purposes and thus cannot be a
function of H, K, L etc. The following is valid:

occ Pb+2 1
 prm q1 1 min 1e-6
 prm q2 1 min 1e-6
 prm q3 1 min 1e-6
 prm q4 1 min 1e-6
 scale_occ = q1 / D_spacing + 1 / (q2 H^2 + q3 K^2 + q4 L^2);

scale_occ is a child of occ, the keyword therefore needs to occur after the occ keyword. The fol-
lowing two definitions will produce identical structure factors but different QUANT results:

Miscellaneous 53

53 Miscellaneous

site Pb occ Pb+2 1 beq 1
site Pb occ Pb+2 0.5 beq 1 scale_occ 2

scale_occ works with magnetic data, neutron data, x-ray data etc… but not PDF data.

Symmetry: The user is responsible for obeying symmetry. If not working in P1 then the Multiplici-
ties_Sum macro could be used. The spherical_harmonics_hkl keyword can also be used, for ex-
ample:

spherical_harmonics_hkl sh sh_order 6
site Pb occ Pb+2 1 beq 1

prm q 1 min 1e-6
scale_occ = q sh;

8.13 p1_fractional_to_file

[p1_fractional_to_file $file] [in_str_format]

Structure dependent. Saves atomic positions corresponding to space group P1 to the file $file.
The original space group can be any space group. If in_str_format is defined, then the structural
data is saved in INP format.

8.14 Determining the orientation of a known fragment using a Rigid-Body

Determines rotation and translation parameters for a known fragment, see TEST_EXAM-

PLES\RIGID\MATCH.INP. The known fragment is in fractional coordinates. To do the same for a
fragment in Cartesian coordinates then change the lattice angles to 90 degrees and adjust the
lattice parameter lengths. Also, see:

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

8.15 user_defined_starting_transition

[generate_stack_sequences] { …
[user_defined_starting_transition $transition_name]

}

user_defined_starting_transition: if used, stacking begins at the transition with the name of
$transition_name. Otherwise, stacking begins at the transition with the greatest probability ac-
cording to the probability density matrix.

8.16 Using a user defined table to input f0 values via user_y

Atomic scattering factors f0 can be defined in a *.XY file and used via the user_y keyword as fol-
lows:

xdd …
user_y C_f0_table C_f0_table.xy
str

http://topas.dur.ac.uk/topaswiki/doku.php?id=rigid_body_-_matching_to_a_known_fragment

Miscellaneous 54

54 Miscellaneous

load f0_f1_f11_atom f0 f1 f11 { C = C_f0_table; 0 0 }
…

Here the C_F0_TABLE.XY file comprises D_spacing and f0 value pairs which is used to describe f0
values for the C atoms within the structure. In the above example, f1 and f11 are set to zero.

8.17 Extending user_y

[xdd]...
[user_y $name { #include $file }]... | [user_y $name $file]...

[1xye_format]
[1rebin_with_dx_of !E]
[1user_y_hat E] …
[1user_y_gauss_fwhm E] …
[1user_y_lor_fwhm E] …
[1user_y_exp_conv_const E [user_y_exp_limit E]…

1New user_y dependents. user_y_hat, user_y_gauss_fwhm, user_y_lor_fwhm and
user_y_exp_conv_const are identical to the hat, gauss_fwhm and lor_fwhm and exp_conv_const
convolutions except they are applied to the user_y data.

user_y can be used to add, multiply and in general manipulate data files of different x-axis steps.
For example, to add two data files, square the result and then multiply by the x-axis reserved pa-
rameter X, the following can be used:

user_y f1 file1.xy
user_y f2 file2.xy
yobs_eqn result.sst = X (f1 + f2)^2; min 10 max 100 del 0.01

The test example USER_Y\USER_Y.INP fits five fit objects to the quartz triplet using a learnt peak
shape defined using user_y; the fit with the individual fit_obj’s displayed (using the macro
Plot_Fit_Obj) looks like:

Miscellaneous 55

55 Miscellaneous

The test example USER_Y\USER_Y_CONVOLUTION.INP fits five fit objects to a simulated pattern us-
ing a learnt peak shape defined using user_y with the two user_y convolutions of
user_y_exp_conv_const and user_y_gauss_fwhm; the INP file looks like:

'#define CREATE_SIMULATED_
continue_after_convergence

macro FO_Peak(& p, & pe, & a, & x, & s)
 {
 fit_obj = a p;
 min_X = -pe s + x; max_X = pe s + x;
 fo_transform_X = (X - x) / s;
 }

prm !peak_extent 2

#ifdef CREATE_SIMULATED_
 iters 0
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2
 user_y_gauss_fwhm @ 0.1 min 0.1 max 2
 yobs_eqn = 1; min 66 max 70 del 0.01
 gui_ignore ‘ don’t load data file into GUI
 Out_X_Ycalc(user_y_convolution.xy)
#else
 ' Fit to the simulated peak
 user_y peak { _xy -0.01 0 0 100 0.01 0 }
 user_y_exp_conv_const @ 1 min 0.5 max 2 val_on_continue = Rand(0.5, 2);
 user_y_gauss_fwhm @ 0.1 min 0.1 max 1 val_on_continue = Rand(0.1, 1);
 xdd user_y_convolution.xy
#endif
 start_X 66
 finish_X 70

2Th Degrees

68

C
o

u
n

ts
17,000

16,000

15,000

14,000

13,000

12,000

11,000

10,000

9,000

8,000

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0

-1,000

user_y 1 0.00 %

user_y 2 0.00 %

user_y 3 0.00 %

user_y 4 0.00 %

user_y 5 0.00 %

Miscellaneous 56

56 Miscellaneous

 bkg @ 100
 prm a1 1000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a2 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a3 3000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a4 2000 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm a5 1500 min 1.0e-6 val_on_continue = Rand(1, 100);
 prm x1 67.7 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x2 67.9 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x3 68.1 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x4 68.3 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm x5 68.5 val_on_continue = Val + Rand(-0.01, 0.01) 5; min 67 max 69
 prm s1 0.7 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s2 0.9 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s3 1.1 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s4 1.0 val_on_continue = Rand(0.5, 2); min 0.5 max 2
 prm s5 0.8 val_on_continue = Rand(0.5, 2); min 0.5 max 2

 FO_Peak(peak, peak_extent, a1, x1, s1) Plot_Fit_Obj("user_y 1")
 FO_Peak(peak, peak_extent, a2, x2, s2) Plot_Fit_Obj("user_y 2")
 FO_Peak(peak, peak_extent, a3, x3, s3) Plot_Fit_Obj("user_y 3")
 FO_Peak(peak, peak_extent, a4, x4, s4) Plot_Fit_Obj("user_y 4")
 FO_Peak(peak, peak_extent, a5, x5, s5) Plot_Fit_Obj("user_y 5")

8.18 New Keywords

[num_cycles #]

Determines the number of cycles to process when continue_after_convergence is defined.
The number of iterations, defined using iters, is still adhered to. Thus, to set number of cycles
to 100 then using something like:

continue_after_convergence
iters 1000000000
num_cycles 100

[suspend_writing_to_log_file #1]

When num_runs > 0, then, by default, output to TOPAS.LOG (or TC.LOG if running TC.EXE) is sus-
pended after the first run (Run_Number == 0). suspend_writing_to_log_file changes this be-
haviour.

xdd…
[gui_reload]
[gui_ignore]

When in Launch mode; data files by default are not reloaded if already loaded. gui_reload
forces the reload of the data file. Data files are loaded/reloaded into the GUI under the follow-
ing circumstances:

• The data file is not loaded into the GUI

• Any of the following keywords have been used at the xdd level:

gui_reload, rebin_with_dx_of, smooth, yobs_eqn, yobs_to_xo_posn_yobs

Miscellaneous 57

57 Miscellaneous

gui_reload can be used in cases where the data file has been changed by a process not listed.
gui_ignore informs the GUI to ignore the xdd data file; Ycalc, difference and other items asso-
ciated with the data file is not retrieved from the Kernel.

[inp_text $name] …
[inp_text_insert $name { … }]…

inp_text provides a means of defining INP text at one place in a file and having that text in-
serted at another place in the INP file, or in an #include file, using inp_text_insert. The inp_text
is updated on refinement termination. inp_text is useful in simplifying complicated INP files
where placing control parameters at the top of the file is of benefit; see test_example INP-

TEXT.INP. An example is as follows:

inp_text back_ground {
 bkg @ 17.365576` 14.5555883` 14.038067`
}
xdd …
 inp_text_insert back_ground

More than one inp_text can be of the same name; in such cases inp_text_insert will use the
most recent inp_text.

8.19 New functions

Value_at_X(object, x) : Returns the value of object at X = x. object could be a parameter or a user_y
object. For example, to ensure background is close to the high angle end of a pattern during
PDF-generation, the following could be implemented:

user_y u capillary.xy
fit_obj = (p0 + p1 X) u;
bkg @ 0 0 0
penalty = 1000 (Bkg_at(X2) + (p0 + p1 X2) Value_at_X(u, X2) - Yobs_at(X2))^2;

Yobs_Min(x1, x2) : Returns the minimum value of Yobs between x1 and x2.

Yobs_at(x) : Returns the value of Yobs at x. Zero is returned of x  X1 or x  X2.

Ycalc_at(x) : Returns the value of Ycalc at x. Zero is returned if x  X1 or x  X2.

Yobs_Avg (x1, x2) : Returns the average value of Yobs between x1 and x2. x1 and x2 is first set to
the closest x-axis data point.

New GUI functionality 58

58 New GUI functionality

 ... NEW GUI FUNCTIONALITY

9.1 TOPAS is DPI aware

Monitors with a high number of Dots Per Inch (DPI), often display text that are too small. Windows
can scale fonts using Windows font scaling to enlarge text. This scaling is carried through to
TOPAS where fonts and bitmaps scale to the required size. Additionally, a thicker-text option
("Segoe UI Semibold") can be enabled if the TOPAS text appears too thin. The option is saved for
subsequent TOPAS loads and is enabled/disabled from the View menu:

After applying Windows scaling, TOPAS needs a Sign-Out and a Sign-In to display all text correctly
scaled. Also, for TOPAS to use its DPI capabilities, the properties of the executable needs to be
set to "Application", i.e.

9.2 Antialiasing and OpenGL

Enable Antialiasing on your graphics card to display smooth lines in OpenGL; this affects all
OpenGL displays. Depending on the graphics card Antialiasing can also be enabled on a program
specific manner.

New GUI functionality 59

59 New GUI functionality

9.3 Displaying a phase with and without background

Phases can be plotted with or without background by cycling through the three states
of the phase-display icon.

9.4 How atoms are displayed in OpenGL

Atoms colours and radii are defined in the files ATOM_COLORS.DEF and ATOM_RADIUS.DEF respec-
tively. A site defined as:

site S1 occ Al+3 1 beq 1

will be displayed as a Sulphur atom. If the Site Name, minus the numbers, is not found in
ATOM_COLOURS.DEF then the atom type defined at the first site occupancy is used. Thus, a site
defined as:

site _S1 occ Al+3 1 beq 1

will be displayed as an Aluminium atom.

9.5 x_calculation_step deleted when constant x-axis step size detected

*.XY and *.XYE data files are converted to a constant x-axis step size when a constant step size
is detected. When this occurs Version 7 removes the “Calc.Step” item from the GUI menus for the
corresponding data file. A small calculation step size can still be used by increasing “Conv. Steps”.
PRO files containing an x_calculation_step will still show an entry of x_calculation_step.

9.6 hide_peak_sticks

A GUI option that toggles the display of peak sticks in the scan window; the option can be found
at the Peaks phase level as follows:

References 60

60 References

 . REFERENCES

Burla, C.B; Carrozzini, B.; Cascarano, G. L.; Giacovazzo C. & Polidori, G. (2011). J. Appl. Cryst. 44,
1143–1151

Coelho, A. A. (2007). Acta Cryst. A36, 400–406. “A charge-flipping algorithm incorporating the
tangent formula for solving difficult structures”

Coelho, A. A. & Rowles, M. R. (2017). J. Appl. Cryst. 50, 1331-1340.
https://doi.org/10.1107/S160057671701130X. "A capillary specimen aberration for describing
X-ray powder diffraction line profiles for convergent, divergent and parallel beam geometries".

Coelho, A. A. (2017). J. Appl. Cryst. 50, 1323-1330. https://doi.org/10.1107/S1600576717011359
"An indexing algorithm independent of peak position extraction for X-ray powder diffraction
patterns".

aCoelho, A. A. (2018). J. Appl. Cryst. 51, 112-123. https://doi.org/10.1107/S1600576717017988, "De-
convolution of instrument and K contributions from X-ray powder diffraction patterns using
least squares with penalties".

bCoelho, A. A. (2018). J. Appl. Cryst. 51, 210-218. https://doi.org/10.1107/S1600576718000183,
"TOPAS & TOPAS-Academic: An optimization program integrating computer algebra and crys-
tallographic objects written in c++".

cCoelho, A. A. (2018). J. Appl. Cryst. 51, 428-435.“Optimum Levenberg-Marquardt constant deter-
mination for nonlinear least-squares".

Elser, Veit; Lan, Ti-Yen and Bendory Tamir (2017). arXiv:1706.00399 [cs.IT]. "Benchmark prob-
lems for phase retrieval".

Mooers, B. H. M. (2016). Acta Cryst. D72, 477–487

https://doi.org/10.1107/S160057671701130X
https://doi.org/10.1107/S1600576717011359
https://doi.org/10.1107/S1600576717017988
https://doi.org/10.1107/S1600576718000183

	1 Unseen improvements
	1.1 Referencing

	2 Amazon EC2 cloud computing – TC-Cloud
	2.1 Operation
	2.2 Pre-requisites
	2.3 Pricing of AWS cloud resources
	2.4 AWS dashboard and operating TC-Cloud
	2.5 Installing AWS CLI on the local computer
	2.6 Operating TC-Cloud from TOPAS (GUI)
	2.7 Terminating/Stopping TC-VMs and tc-mon.a
	2.8 Powering off TC-VMs after 100 minutes of inactivity
	2.9 Retrieving the INP or FC file that gave the best GOF
	2.10 Monitoring, TC-Cloud is independent of the local computer
	2.11 Random number generator automatically seeded
	2.12 CLOUD__ #define and Get(cloud_run_number)
	2.13 ‘Setup Cloud’ details
	2.14 ‘Virtual Machines’ tab options
	2.15 Creating TC-VMs – Spot Instances
	2.16 Choosing the optimum VM type
	2.17 Unable to connect to TC-VMs after local computer restart

	3 Protein Refinement
	3.1 Reading Protein Data Bank (PDB) CIF files
	3.2 Protein Refinement, 6y84, SARS-CoV-2 main protease

	4 Solving proteins at atomic resolution
	4.1 Ab initio solution of triclinic 4lzt
	4.2 Solution of non-triclinic lattices using a known atomic position
	4.3 Ab initio solution of 5da6 in space group R32

	5 Fast simultaneous refinement of 1000s of patterns
	5.1 Example refinement of 1000s of patterns

	6 Deconvolution
	6.1 Deconvolution – Simulated pattern

	7 PDF-Generation
	7.1 PDF-Generating - LiFePO4
	1.1.1 Operation 0 – Fitting peaks to the diffraction pattern
	1.1.2 Operation 1 – Generation G(r) from the fitted peaks
	1.1.3 Correcting the PDF due to a zero error in reciprocal space
	1.1.4 Generating F(Q) from G(r) - gr_to_fq

	7.2 PDF-Generating - Fullerene
	7.3 Levenberg-Marquardt constant determination

	8 Miscellaneous
	8.1 Capillary convolution for a focusing convergent beam
	8.2 LP-Search - threaded, faster and more exhaustive
	8.3 Sine and cosine transforms
	8.4 *.SST data files
	8.5 xdd_array and nested xdd_sum
	8.6 String_To_Variable and Double_To_String functions
	8.7 Restraining background using the Bkg_at function
	8.8 phase_out_X
	8.9 Functions allowing access to rigid-body fractional atomic coordinates
	8.10 set_top_peak_area
	8.11 bring_nth_peak_to_top
	8.12 scale_occ keyword
	8.13 p1_fractional_to_file
	8.14 Determining the orientation of a known fragment using a Rigid-Body
	8.15 user_defined_starting_transition
	8.16 Using a user defined table to input f0 values via user_y
	8.17 Extending user_y
	8.18 New Keywords
	8.19 New functions

	9 New GUI functionality
	9.1 TOPAS is DPI aware
	9.2 Antialiasing and OpenGL
	9.3 Displaying a phase with and without background
	9.4 How atoms are displayed in OpenGL
	9.5 x_calculation_step deleted when constant x-axis step size detected
	9.6 hide_peak_sticks

	10 References

